nanostring technology
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 33)

H-INDEX

6
(FIVE YEARS 2)

Bone Reports ◽  
2022 ◽  
Vol 16 ◽  
pp. 101156
Author(s):  
Agnese Persichetti ◽  
Edoardo Milanetti ◽  
Biagio Palmisano ◽  
Annamaria di Filippo ◽  
Emanuela Spica ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Michelle Broekhuizen ◽  
Emilie Hitzerd ◽  
Thierry P. P. van den Bosch ◽  
Jasper Dumas ◽  
Robert M. Verdijk ◽  
...  

Preeclampsia is a severe placenta-related pregnancy disorder that is generally divided into two subtypes named early-onset preeclampsia (onset <34 weeks of gestation), and late-onset preeclampsia (onset ≥34 weeks of gestation), with distinct pathophysiological origins. Both forms of preeclampsia have been associated with maternal systemic inflammation. However, alterations in the placental immune system have been less well characterized. Here, we studied immunological alterations in early- and late-onset preeclampsia placentas using a targeted expression profile approach. RNA was extracted from snap-frozen placenta samples (healthy n=13, early-onset preeclampsia n=13, and late-onset preeclampsia n=6). The expression of 730 immune-related genes from the Pan Cancer Immune Profiling Panel was measured, and the data were analyzed in the advanced analysis module of nSolver software (NanoString Technology). The results showed that early-onset preeclampsia placentas displayed reduced expression of complement, and toll-like receptor (TLR) associated genes, specifically TLR1 and TLR4. Mast cells and M2 macrophages were also decreased in early-onset preeclampsia compared to healthy placentas. The findings were confirmed by an immunohistochemistry approach using 20 healthy, 19 early-onset preeclampsia, and 10 late-onset preeclampsia placentas. We conclude that the placental innate immune system is altered in early-onset preeclampsia compared to uncomplicated pregnancies. The absence of these alterations in late-onset preeclampsia placentas indicates dissimilar immunological profiles. The study revealed distinct pathophysiological processes in early-onset and late-onset preeclampsia placentas and imply that a tailored treatment to each subtype is desirable.


2021 ◽  
Vol 12 ◽  
Author(s):  
Verena Ducret ◽  
Melina Abdou ◽  
Catarina Goncalves Milho ◽  
Sara Leoni ◽  
Oriane Martin--Pelaud ◽  
...  

Zinc is one of the most important trace elements for life and its deficiency, like its excess, can be fatal. In the bacterial opportunistic pathogen Pseudomonas aeruginosa, Zn homeostasis is not only required for survival, but also for virulence and antibiotic resistance. Thus, the bacterium possesses multiple Zn import/export/storage systems. In this work, we determine the expression dynamics of the entire P. aeruginosa Zn homeostasis network at both transcript and protein levels. Precisely, we followed the switch from a Zn-deficient environment, mimicking the initial immune strategy to counteract bacterial infections, to a Zn-rich environment, representing the phagocyte metal boost used to eliminate an engulfed pathogen. Thanks to the use of the NanoString technology, we timed the global silencing of Zn import systems and the orchestrated induction of Zn export systems. We show that the induction of Zn export systems is hierarchically organized as a function of their impact on Zn homeostasis. Moreover, we identify PA2807 as a novel Zn resistance component in P. aeruginosa and highlight new regulatory links among Zn-homeostasis systems. Altogether, this work unveils a sophisticated and adaptive homeostasis network, which complexity is key in determining a pathogen spread in the environment and during host-colonization.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Nina Radosevic-Robin ◽  
Pier Selenica ◽  
Yingjie Zhu ◽  
Helen H. Won ◽  
Michael F. Berger ◽  
...  

AbstractTo find metastatic recurrence biomarkers of triple-negative breast cancer (TNBC) treated by neoadjuvant chemotherapy and anti-EGFR antibodies (NAT), we evaluated tumor genomic, transcriptomic, and immune features, using MSK-IMPACT assay, gene arrays, Nanostring technology, and TIL assessment on H&E. Six patients experienced a rapid fatal recurrence (RR) and other 6 had later non-fatal recurrences (LR). Before NAT, RR had low expression of 6 MHC class I and 13 MHC class II genes but were enriched in upregulated genes involved in the cell cycle-related pathways. Their TIL number before NAT in RR was very low (<5%) and did not increase after treatment. In post-NAT residual tumors, RR cases showed high expression of SOX2 and CXCR4. Our results indicate that high expression of cell cycle genes, combined with cold immunological phenotype, may predict strong TNBC resistance to NAT and rapid progression after it. This biomarker combination is worth validation in larger studies.


2021 ◽  
Vol 15 (8) ◽  
pp. e0009592
Author(s):  
Rebecca L. Brocato ◽  
Louis A. Altamura ◽  
Brian D. Carey ◽  
Casey C. Perley ◽  
Candace D. Blancett ◽  
...  

Background Syrian hamsters infected with Andes virus (ANDV) develop a disease that recapitulates many of the salient features of human hantavirus pulmonary syndrome (HPS), including lethality. Infection of hamsters with Hantaan virus (HTNV) results in an asymptomatic, disseminated infection. In order to explore this dichotomy, we examined the transcriptome of ANDV- and HTNV-infected hamsters. Results Using NanoString technology, we examined kinetic transcriptional responses in whole blood collected from ANDV- and HTNV-infected hamsters. Of the 770 genes analyzed, key differences were noted in the kinetics of type I interferon sensing and signaling responses, complement activation, and apoptosis pathways between ANDV- and HTNV-infected hamsters. Conclusions Delayed activation of type I interferon responses in ANDV-infected hamsters represents a potential mechanism that ANDV uses to subvert host immune responses and enhance disease. This is the first genome-wide analysis of hantavirus-infected hamsters and provides insight into potential avenues for therapeutics to hantavirus disease.


2021 ◽  
Author(s):  
Verena Ducret ◽  
Melina Abdou ◽  
Catarina Goncalves Milho ◽  
Sara Leoni ◽  
Oriane Martin--Pelaud ◽  
...  

Zinc is one of the most important trace elements for life and its deficiency, like its excess, can be fatal. In the bacterial opportunistic pathogen Pseudomonas aeruginosa, Zn homeostasis is not only required for survival, but also for virulence and antibiotic resistance. Thus, the bacterium possesses multiple Zn import/export/storage systems. In this work, we determine the expression dynamics of the entire P. aeruginosa Zn homeostasis network at both transcript and protein levels. Precisely, we followed the switch from a Zn-deficient environment, mimicking the initial immune strategy to bacterial infections, to a Zn-rich environment, representing the phagocyte metal boost used to eliminate an engulfed pathogen. Thanks to the use of the NanoString technology, we timed the global silencing of Zn import systems and the orchestrated induction of Zn export systems. We show that the induction of Zn export systems is hierarchically organized as a function of their impact on Zn homeostasis. Moreover, we identify PA2807 as a novel Zn resistance component in P. aeruginosa and highlight new regulatory links among Zn-homeostasis systems. Altogether, this work unveils a sophisticated and adaptative homeostasis network, which complexity is key in determining a pathogen spread in the environment and during host-colonization.


2021 ◽  
Vol 12 ◽  
Author(s):  
Priyanka Devi-Marulkar ◽  
Carolina Moraes-Cabe ◽  
Pascal Campagne ◽  
Béatrice Corre ◽  
Aida Meghraoui-Kheddar ◽  
...  

BackgroundInterferon beta (IFNβ) has been prescribed as a first-line disease-modifying therapy for relapsing-remitting multiple sclerosis (RRMS) for nearly three decades. However, there is still a lack of treatment response markers that correlate with the clinical outcome of patients.AimTo determine a combination of cellular and molecular blood signatures associated with the efficacy of IFNβ treatment using an integrated approach.MethodsThe immune status of 40 RRMS patients, 15 of whom were untreated and 25 that received IFNβ1a treatment (15 responders, 10 non-responders), was investigated by phenotyping regulatory CD4+ T cells and naïve/memory T cell subsets, by measurement of circulating IFNα/β proteins with digital ELISA (Simoa) and analysis of ~600 immune related genes including 159 interferon-stimulated genes (ISGs) with the Nanostring technology. The potential impact of HLA class II gene variation in treatment responsiveness was investigated by genotyping HLA-DRB1, -DRB3,4,5, -DQA1, and -DQB1, using as a control population the Milieu Interieur cohort of 1,000 French healthy donors.ResultsClinical responders and non-responders displayed similar plasma levels of IFNβ and similar ISG profiles. However, non-responders mainly differed from other subject groups with reduced circulating naïve regulatory T cells, enhanced terminally differentiated effector memory CD4+ TEMRA cells, and altered expression of at least six genes with immunoregulatory function. Moreover, non-responders were enriched for HLA-DQB1 genotypes encoding DQ8 and DQ2 serotypes. Interestingly, these two serotypes are associated with type 1 diabetes and celiac disease. Overall, the immune signatures of non-responders suggest an active disease that is resistant to therapeutic IFNβ, and in which CD4+ T cells, likely restricted by DQ8 and/or DQ2, exert enhanced autoreactive and bystander inflammatory activities.


2021 ◽  
Vol 31 (3) ◽  
Author(s):  
Corinna Preusse ◽  
Pascale Eede ◽  
Lucie Heinzeling ◽  
Kiara Freitag ◽  
Randi Koll ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Rhafaela L. Causin ◽  
Luciane S. da Silva ◽  
Adriane F. Evangelista ◽  
Letícia F. Leal ◽  
Karen C. B. Souza ◽  
...  

New prevention strategies are needed to detect cervical intraepithelial neoplasia (CIN). The microRNA expression analysis has already been reported as molecular biomarkers in the early detection of cervical cancer (CC) through minimally invasive samples, such as liquid biopsy, obtained through collection using liquid-based cytology (LBC). In this study, we aimed to identify molecular signatures of microRNAs in cervical precursor lesions from LBC cervical and the molecular pathways potentially associated with the CC progression. We analyzed 31 LBC cervical samples from women who underwent colposcopy. These samples were divided into two groups: the first group was composed of samples without precursor lesions of CC, considering the control group, referred to as healthy female subjects (HFS; n = 11 ). The second group corresponded to women diagnosed with cervical interepithelial neoplasia grade 3 (CIN 3; n = 20 ). We performed microRNA and gene expression profiling using the nCounter® miRNA Expression Assays (NanoString Technology) and PanCancer Pathways (NanoString Technology), respectively. A microRNA target prediction was performed by mirDIP, and molecular pathway interaction was constructed using Cytoscape. Bidirectional in silico analyses and Pearson’s correlation were performed for associated the relation between genes, and miRNAs differentially expressed related cervical cancer progression were performed. We found that the expression of nine microRNAs was significantly higher, two were downregulated (miR-381-3p and miR-4531), and seven miRNAs were upregulated (miR-205-5p, miR-130a-3p, miR-3136-3p, miR-128-2-5p, let-7f-5p, miR-202-3p, and miR-323a-5p) in CIN 3 ( fold   change ≥ 2 and p ≤ 0.05 ). The miRNA expression patterns were independent of hr-HPV infection. We identified four miRNAs (miR-205-5p, miR-130a-3p, miR-4531, and miR-381-3p) that could be used as biomarkers for CIN 3 in LBC samples through multiple logistic regression analyses. We found 16 genes differentially expressed between CIN 3 and HSF samples ( fold   change ≥ 2 and p ≤ 0.05 ). We found the correlation between miR-130a-3p and CCND1( R = − 0.52 ; p = 0.0029 ), miR-205-5p and EGFR ( R = 0.53 ; p = 0.0021 ), and miR-4531 and SMAD2 ( R = − 0.54 ; p = 0.0016 ). In addition, we demonstrated the most significant pathways of the targets associated with cervical cancer progression (FDR-corrected p < 0.001 ). This study demonstrated that miRNA biomarkers may distinguish healthy cervix and CIN 3 and regulate important molecular pathways of carcinogenesis.


Sign in / Sign up

Export Citation Format

Share Document