functional relevance
Recently Published Documents


TOTAL DOCUMENTS

1097
(FIVE YEARS 401)

H-INDEX

68
(FIVE YEARS 12)

Author(s):  
Ha Huy Cuong Nguyen ◽  
Bui Thanh Khiet ◽  
Van Loi Nguyen ◽  
Thanh Thuy Nguyen

Normally web services are classified by the quality of services; however, the term quality is not absolute and defined relatively. The quality of web services is measured or derived using various parameters like reliability, scalability, flexibility, and availability. The limitation of the methods employing these parameters is that sometimes they are producing similar web services in recommendation lists. To address this research problem, the novel improved clustering-based web service recommendation method is proposed in this paper. This approach is mainly dealing with producing diversity in the results of web service recommendations. In this method, functional interest, quality of service (QoS) preference, and diversity features are combined to produce a unique recommendation list of web services to end-users. To produce the unique recommendation results, we propose a varied web service classification order that is clustering-based on web services’ functional relevance such as non-useful pertinence, recorded client intrigue importance, and potential client intrigue significance. Additionally, to further improve the performance of this approach, we designed web service graph construction, an algorithm of various widths clustering. This approach serves to enhance the exceptional quality, that is, the accuracy of web service recommendation outcomes. The performance of this method was implemented and evaluated against existing systems for precision, and f-score performance metrics, using the research datasets.


Author(s):  
Minghuan Mao ◽  
Liang Yang ◽  
Jingyao Hu ◽  
Bing Liu ◽  
Xiling Zhang ◽  
...  

AbstractThe neuronally expressed developmentally downregulated 4 (NEDD4) gene encodes a ubiquitin ligase that targets the epithelial sodium channel for degradation and has been implicated in tumor growth in various cancers. Hence, in this study, we intended to characterize the functional relevance of the NEDD4-mediated Kruppel-like factor 8/microRNA-132/nuclear factor E2-related factor 2 (KLF8/miR-132/NRF2) axis in the development of bladder cancer. NEDD4 and KLF8 were overexpressed in bladder cancer tissues and were associated with poorer patient survival rates. In bladder cancer cells, NEDD4 intensified the stability and transcriptional activity of KLF8 through ubiquitination to augment cell viability and migratory ability. Our investigations revealed that NEDD4 promotes the binding of KLF8 to the miR-132 promoter region and inhibits the expression of miR-132. KLF8 inhibited the expression of miR-132 to augment the viability and migratory ability of bladder cancer cells. Furthermore, miR-132 downregulated the expression of NRF2 to restrict the viability and migratory ability of bladder cancer cells. In addition, in vivo findings verified that NEDD4 regulates the KLF8/miR-132/NRF2 axis by accelerating tumor growth and lung metastasis. In conclusion, this study highlights NEDD4 as a potential therapeutic target against tumor recurrence and metastasis in bladder cancer.


Author(s):  
Shanru Zuo ◽  
Yihu Yi ◽  
Chen Wang ◽  
Xueguang Li ◽  
Mingqing Zhou ◽  
...  

Extrachromosomal circular DNA (eccDNA) is a type of double-stranded circular DNA that is derived and free from chromosomes. It has a strong heterogeneity in sequence, length, and origin and has been identified in both normal and cancer cells. Although many studies suggested its potential roles in various physiological and pathological procedures including aging, telomere and rDNA maintenance, drug resistance, and tumorigenesis, the functional relevance of eccDNA remains to be elucidated. Recently, due to technological advancements, accumulated evidence highlighted that eccDNA plays an important role in cancers by regulating the expression of oncogenes, chromosome accessibility, genome replication, immune response, and cellular communications. Here, we review the features, biogenesis, physiological functions, potential functions in cancer, and research methods of eccDNAs with a focus on some open problems in the field and provide a perspective on how eccDNAs evolve specific functions out of the chaos in cells.


2022 ◽  
Author(s):  
Han-jun Wu ◽  
Liu-er Liu ◽  
Wen-ning Wu ◽  
Jin-qiong Zhan ◽  
Yi-heng Li ◽  
...  

Abstract Klotho is a life extension factor that has an ability to regulate the function of GluN2B-containing N-methyl-D-aspartate receptors (NMDARs), whose dysfunction in the nucleus accumbens (NAc) underlies critical aspects of the pathophysiology of major depression. Here we study the functional relevance of klotho in the pathogenesis of depression. A chronic social defeat stress paradigm, where mice are either categorized as susceptible or unsusceptible group based on their performance in a social interaction test, was used in this study. We found that the expression of klotho was largely decreased in the NAc of susceptible mice when compared to control or unsusceptible group. Genetic knockdown of klotho in the NAc induced depressive-like behaviors in naive mice, while overexpression of klotho produced an antidepressive effect in normal mice and ameliorated the depressive-like behaviors in susceptible mice. Molecularly, knockdown of klotho in the NAc resulted in selective decreases of total and synaptic GluN2B expression that were identical to susceptible mice. Elevation of klotho in the NAc reversed the reductions of GluN2B expressions, as well as altered synaptic transmission and spine density in the NAc of susceptible mice. Furthermore, blockade of GluN2B with a specific antagonist abolished the beneficial effects of klotho elevation in susceptible mice. Collectively, we demonstrated that klotho in the NAc modulates depressive-like behaviors by regulating the function of GluN2B-containing NMDARs. These results reveal a novel role for klotho in the pathogenesis of depression, opening new insights into the molecular basis of major depression.


2021 ◽  
Vol 23 (1) ◽  
pp. 471
Author(s):  
Georgi Nikolaev ◽  
Ralitsa Robeva ◽  
Rossitza Konakchieva

The pineal hormone melatonin has attracted great scientific interest since its discovery in 1958. Despite the enormous number of basic and clinical studies the exact role of melatonin in respect to human physiology remains elusive. In humans, two high-affinity receptors for melatonin, MT1 and MT2, belonging to the family of G protein-coupled receptors (GPCRs) have been cloned and identified. The two receptor types activate Gi proteins and MT2 couples additionally to Gq proteins to modulate intracellular events. The individual effects of MT1 and MT2 receptor activation in a variety of cells are complemented by their ability to form homo- and heterodimers, the functional relevance of which is yet to be confirmed. Recently, several melatonin receptor genetic polymorphisms were discovered and implicated in pathology—for instance in type 2 diabetes, autoimmune disease, and cancer. The circadian patterns of melatonin secretion, its pleiotropic effects depending on cell type and condition, and the already demonstrated cross-talks of melatonin receptors with other signal transduction pathways further contribute to the perplexity of research on the role of the pineal hormone in humans. In this review we try to summarize the current knowledge on the membrane melatonin receptor activated cell signaling in physiology and pathology and their relevance to certain disease conditions including cancer.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 68
Author(s):  
Justin D. La Favor ◽  
Clifford J. Pierre ◽  
Trinity J. Bivalacqua ◽  
Arthur L. Burnett

The mechanistic target of rapamycin (mTOR) is a nutrient-sensitive cellular signaling kinase that has been implicated in the excess production of reactive oxygen species (ROS). NADPH oxidase-derived ROS have been implicated in erectile dysfunction pathogenesis. The objective of this study was to determine if mTOR is an activator of NADPH oxidase in the penis and to determine the functional relevance of this pathway in a translationally relevant model of diet-induced erectile dysfunction. Male mice were fed a control diet or a high-fat, high-sucrose Western style diet (WD) for 12 weeks and treated with vehicle or rapamycin for the final 4 weeks of the dietary intervention. Following the intervention, erectile function was assessed by cavernous nerve-stimulated intracavernous pressure measurement, in vivo ROS production was measured in the penis using a microdialysis approach, and relative protein contents from the corpus cavernosum were determined by Western blot. Erectile function was impaired in vehicle treated WD-mice and was preserved in rapamycin treated WD-mice. Penile NADPH oxidase-mediated ROS were elevated in WD-mice and suppressed by rapamycin treatment. Western blot analysis suggests mTOR activation with WD by increased active site phosphorylation of mTOR and p70S6K, and increased expression of NADPH oxidase subunits, all of which were suppressed by rapamycin. These data suggest that mTOR is an upstream mediator of NADPH oxidase in the corpus cavernosum in response to a chronic Western diet, which has an adverse effect on erectile function.


2021 ◽  
Author(s):  
Mari Sepp ◽  
Kevin Leiss ◽  
Ioannis Sarropoulos ◽  
Florent Murat ◽  
Konstantin Okonechnikov ◽  
...  

The expansion of the neocortex, one of the hallmarks of mammalian evolution, was accompanied by an increase in the number of cerebellar neurons. However, little is known about the evolution of the cellular programs underlying cerebellum development in mammals. In this study, we generated single-nucleus RNA-sequencing data for ~400,000 cells to trace the development of the cerebellum from early neurogenesis to adulthood in human, mouse, and the marsupial opossum. Our cross-species analyses revealed that the cellular composition and differentiation dynamics throughout cerebellum development are largely conserved, except for human Purkinje cells. Global transcriptome profiles, conserved cell state markers, and gene expression trajectories across neuronal differentiation show that the cerebellar cell type-defining programs have been overall preserved for at least 160 million years. However, we also discovered differences. We identified 3,586 genes that either gained or lost expression in cerebellar cells in one of the species, and 541 genes that evolved new expression trajectories during neuronal differentiation. The potential functional relevance of these cross-species differences is highlighted by the diverged expression patterns of several human disease-associated genes. Altogether, our study reveals shared and lineage-specific programs governing the cellular development of the mammalian cerebellum, and expands our understanding of the evolution of mammalian organ development.


2021 ◽  
Author(s):  
Gabor Bocskai ◽  
Adrian Potari ◽  
Ferenc Gombos ◽  
Robert Bodizs ◽  
Ilona Kovacs

Sleep spindles are developmentally relevant cortical oscillatory patterns; however, they have mostly been studied by considering the entire spindle frequency range (11 to 15 Hz) without a distinction between the functionally and topographically different slow and fast spindles, using relatively few electrodes and analysing wide age-ranges. Here, we employ HD-EEG polysomnography in three age-groups between 12 to 20 years of age, with an equal distribution between the two genders, and analyse the adolescent developmental pattern of the four major parameters of slow and fast sleep spindles. Most of our findings corroborate those very few previous studies that also make a distinction between slow and fast spindles in their developmental analysis. We find spindle frequency increasing with age, although spindle density change is not obvious in our study. We confirm the declining tendencies for amplitude and duration, although within narrower, more specific age-windows than previously. Spindle frequency seems to be higher in females in the oldest age-group. Based on the pattern of our findings, we suggest that HD-EEG, specifically targeting slow and fast spindle ranges and relatively narrow age-ranges would advance the understanding of both adolescent development and the functional relevance of sleep spindles in general.


2021 ◽  
Vol 8 ◽  
Author(s):  
Huan-Chuan Tseng ◽  
Cheng-Te Hsiao ◽  
Nao Yamakawa ◽  
Yann Guérardel ◽  
Kay-Hooi Khoo

Mass spectrometry–based high-sensitivity mapping of terminal glycotopes relies on diagnostic MS2 and/or MS3 ions that can differentiate linkage and define the location of substituents including sulfates. Unambiguous identification of adult zebrafish glycotopes is particularly challenging due to the presence of extra β4-galactosylation on the basic building block of Galβ1-4GlcNAc that can be fucosylated and variably sialylated by N-acetyl, N-glycolyl, or deaminated neuraminic acids. Building on previous groundwork that have identified various organ-specific N- and O-glycans of adult zebrafish, we show here that all the major glycotopes of interest can be readily mapped by direct nano-LC-MS/MS analysis of permethylated glycans. Homing in on the brain-, intestine-, and ovary-derived samples, organ-specific glycomic reference maps based on overlaid extracted ion chromatograms of resolved glycan species, and composite charts of summed intensities of diagnostic MS2 ions representing the distribution and relative abundance of each of the glycotopes and sialic acid variants were established. Moreover, switching to negative mode analysis of sample fractions enriched in negatively charged glycans, we show, for the first time, that a full range of sulfated glycotopes is expressed in adult zebrafish. In particular, 3-O-sulfation of terminal Gal was commonly found, whereas terminal sulfated HexNAc as in GalNAcβ1-4GlcNAc (LacdiNAc), and 3-O-sulfated hexuronic acid as in HNK-1 epitope (SO3-3GlcAβ1-3Galβ1-4GlcNAc) were identified only in the brain and not in the intestine or ovaries analyzed in parallel. Other characteristic structural features of sulfated O- and N-glycans along with their diagnostic ions detected in this discovery mode sulfoglycomic work collectively expand our adult zebrafish glycome atlas, which can now allow for a more complete navigation and probing of the underlying sulfotransferases and glycosyltransferases, in search of the functional relevance of zebrafish-specific glycotopes. Of particular importance is the knowledge of glycomic features distinct from those of humans when using adult zebrafish as an alternative vertebrate model, rather than mouse, for brain-related glyco-neurobiology studies.


Sign in / Sign up

Export Citation Format

Share Document