growth modeling
Recently Published Documents


TOTAL DOCUMENTS

691
(FIVE YEARS 138)

H-INDEX

43
(FIVE YEARS 5)

2021 ◽  
Vol 12 ◽  
Author(s):  
Peter M. Bourke ◽  
Jochem B. Evers ◽  
Piter Bijma ◽  
Dirk F. van Apeldoorn ◽  
Marinus J. M. Smulders ◽  
...  

Intercropping is both a well-established and yet novel agricultural practice, depending on one’s perspective. Such perspectives are principally governed by geographic location and whether monocultural practices predominate. Given the negative environmental effects of monoculture agriculture (loss of biodiversity, reliance on non-renewable inputs, soil degradation, etc.), there has been a renewed interest in cropping systems that can reduce the impact of modern agriculture while maintaining (or even increasing) yields. Intercropping is one of the most promising practices in this regard, yet faces a multitude of challenges if it is to compete with and ultimately replace the prevailing monocultural norm. These challenges include the necessity for more complex agricultural designs in space and time, bespoke machinery, and adapted crop cultivars. Plant breeding for monocultures has focused on maximizing yield in single-species stands, leading to highly productive yet specialized genotypes. However, indications suggest that these genotypes are not the best adapted to intercropping systems. Re-designing breeding programs to accommodate inter-specific interactions and compatibilities, with potentially multiple different intercropping partners, is certainly challenging, but recent technological advances offer novel solutions. We identify a number of such technology-driven directions, either ideotype-driven (i.e., “trait-based” breeding) or quantitative genetics-driven (i.e., “product-based” breeding). For ideotype breeding, plant growth modeling can help predict plant traits that affect both inter- and intraspecific interactions and their influence on crop performance. Quantitative breeding approaches, on the other hand, estimate breeding values of component crops without necessarily understanding the underlying mechanisms. We argue that a combined approach, for example, integrating plant growth modeling with genomic-assisted selection and indirect genetic effects, may offer the best chance to bridge the gap between current monoculture breeding programs and the more integrated and diverse breeding programs of the future.


2021 ◽  
Author(s):  
Yousef Ghobadiha ◽  
Hamid Motieyan

Abstract Due to increasing urbanization, the rapid expansion of urban spaces has become a major environmental concern over the last few decades. Therefore, modeling the urban expansion as a complex system has been scrutinized in recent years; however, determining the rules that lead to the expansion of urban areas has always been a challenging factor in this field, especially for disaggregated models like cellular automata (CA). To overcome this issue, in this research, an Adaptive Network-based Fuzzy Inference System (ANFIS) is proposed to enhance the simulation of urban growth through the automatic production of transition rules. The ANFIS can be associated with several inputs division methods, such as ANFIS accompanied by grid partitioning (ANFIS-GP), subtractive clustering (ANFIS-SC), and fuzzy c-means clustering (ANFIS-FCM). Hence, twenty-two ANFIS models based on Landsat images for the time interval from 2000 to 2010 and using different division methods were trained to investigate their effect on the efficiency of ANFIS in urban growth modeling. To examine the efficiency, the Cellular Automata-based Markov Chain (CA-MC) as a popular method was developed, and the simulation accuracy of CA-MC and the most accurate ANFIS models were obtained through comparison with observed data. The most accurate ANFIS-SC model had a Kappa of 0.76 and an overall accuracy of 93.41% for the 2019 simulated map. The results from this study reveal that the ANFIS model is effective at simulating urban expansion and the ANFIS-SC is superior to CA-MC, ANFIS-GP, and ANFIS-FCM models in urban expansion modeling.


Sign in / Sign up

Export Citation Format

Share Document