paddy soils
Recently Published Documents


TOTAL DOCUMENTS

1234
(FIVE YEARS 340)

H-INDEX

62
(FIVE YEARS 14)

Pedosphere ◽  
2022 ◽  
Vol 32 (2) ◽  
pp. 348-358
Author(s):  
Nasrin SULTANA ◽  
Jun ZHAO ◽  
Yuanfeng CAI ◽  
G.K.M. Mustafizur RAHMAN ◽  
Mohammad Saiful ALAM ◽  
...  
Keyword(s):  

2022 ◽  
Vol 326 ◽  
pp. 107798
Author(s):  
Liang Wei ◽  
Tida Ge ◽  
Zhenke Zhu ◽  
Rongzhong Ye ◽  
Josep Peñuelas ◽  
...  

2022 ◽  
Vol 165 ◽  
pp. 108517
Author(s):  
Weitao Li ◽  
Yakov Kuzyakov ◽  
Yulong Zheng ◽  
Pengfa Li ◽  
Guilong Li ◽  
...  

Plant Disease ◽  
2022 ◽  
Author(s):  
Yajiao Wang ◽  
Shuping Tian ◽  
Nan Wu ◽  
Wenwen Liu ◽  
Li Li ◽  
...  

Southwest China has the most complex rice-growing regions in China. With great differences in topography, mainly consisting of basins and plateaus, ecological factors in above region differ greatly. In this study, bulk paddy soils collected from a long-term rice field in Chengdu (basins) and in Guiyang (plateaus) were used to study the correlation between microbial diversity and the incidence of rice bacterial diseases. Results showed that the microbial community composition in paddy soils and the microbial functional categories differed significantly between basins and plateaus. They shared more than 70% of the dominant genera (abundance > 1%), but the abundance of the dominant genera differed significantly. Functional analysis found that bulk paddy soils from Chengdu were significantly enriched in virulence factor-related genes; soils from Guiyang were enriched in biosynthesis of secondary metabolites especially antibiotics. Correspondingly, Chengdu was significantly enriched in leaf bacterial pathogens Acidovorax, Xanthomonas, and Pseudomonas. Greenhouse experiments and correlation analysis showed that soil chemical properties had a greater effect on microbial community composition and positively related with the higher incidence of rice bacterial foot rot in Guiyang, while temperature had a greater effect on soil microbial functions and positively related with the higher severity index of leaf bacterial diseases in Chengdu. Our results provide a new perspective on how differences in microbial communities in paddy soils can influence the incidence of rice bacterial diseases in areas with different topographies.


Author(s):  
Yuhong Li ◽  
Zhenke Zhu ◽  
Xiaomeng Wei ◽  
Yakov Kuzyakov ◽  
Baozhen Li ◽  
...  

2021 ◽  
Vol 18 (24) ◽  
pp. 6533-6546
Author(s):  
Ralf Conrad ◽  
Pengfei Liu ◽  
Peter Claus

Abstract. Acetate is an important intermediate during the degradation of organic matter in anoxic flooded soils and sediments. Acetate is disproportionated to CH4 and CO2 by methanogenic or is oxidized to CO2 by sulfate-reducing microorganisms. These reactions result in carbon isotope fractionation, depending on the microbial species and their particular carbon metabolism. To learn more about the magnitude of the isotopic enrichment factors (ε) involved, acetate conversion to CH4 and CO2 was measured in anoxic paddy soils from Vercelli (Italy) and the International Rice Research Institute (IRRI, the Philippines) and in anoxic lake sediments from the northeastern and the southwestern basins of Lake Fuchskuhle (Germany). Acetate consumption was measured using samples of paddy soil or lake sediment suspended in water or in phosphate buffer (pH 7.0), both in the absence and presence of sulfate (gypsum), and of methyl fluoride (CH3F), an inhibitor of aceticlastic methanogenesis. Under methanogenic conditions, values of εac for acetate consumption were always in a range of −21 ‰ to −17 ‰ but higher in the lake sediment from the southwestern basin (−11 ‰). Under sulfidogenic conditions εac values tended to be slightly lower (−26 ‰ to −19 ‰), especially when aceticlastic methanogenesis was inhibited. Again, εac in the lake sediment of the southwestern basin was higher (−18 ‰ to −14 ‰). Determination of εCH4 from the accumulation of 13C in CH4 resulted in much lower values (−37 ‰ to −27 ‰) than from the depletion of 13C in acetate (−21 ‰ to −17 ‰ ), especially when acetate degradation was measured in buffer suspensions. The microbial communities were characterized by sequencing the bacterial 16S rRNA (ribosomal ribonucleic acid) genes as well as the methanogenic mcrA and sulfidogenic dsrB genes. The microbial communities were quite different between lake sediments and paddy soils but were similar in the sediments of the two lake basins and in the soils from Vercelli and the IRRI, and they were similar after preincubation without and with addition of sulfate (gypsum). The different microbial compositions could hardly serve for the prediction of the magnitude of enrichment factors.


Author(s):  
Ziwen Xu ◽  
Shiquan Lv ◽  
Shuxiang Hu ◽  
Liang Chao ◽  
Fangxu Rong ◽  
...  

Paddy soils are globally distributed and saturated with water long term, which is different from most terrestrial ecosystems. To better understand the environmental risks of antibiotics in paddy soils, this study chose sulfadiazine (SDZ) as a typical antibiotic. We investigated its adsorption behavior and the influence of soil solution properties, such as pH conditions, dissolved organic carbon (DOC), ionic concentrations (IC), and the co-existence of Cu2+. The results indicated that (1) changes in soil solution pH and IC lower the adsorption of SDZ in paddy soils. (2) Increase of DOC facilitated the adsorption of SDZ in paddy soils. (3) Cu2+ co-existence increased the adsorption of SDZ on organic components, but decreased the adsorption capacity of clay soil for SDZ. (4) Further FTIR and SEM analyses indicated that complexation may not be the only form of Cu2+ and SDZ co-adsorption in paddy soils. Based on the above results, it can be concluded that soil solution properties and co-existent cations determine the sorption behavior of SDZ in paddy soils.


Sign in / Sign up

Export Citation Format

Share Document