biomass sugars
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 10)

H-INDEX

12
(FIVE YEARS 4)

2021 ◽  
pp. 108008
Author(s):  
Peikang Shi ◽  
Ranran Wu ◽  
Juan Wang ◽  
Chunling Ma ◽  
Zehua Li ◽  
...  
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Dayong Yu ◽  
Xiaofang Liu ◽  
Jingjing Jiang ◽  
Yixuan Liu ◽  
Jinyu Tan ◽  
...  

A new generation of bioplatform molecule 5-ethoxymethylfurfural (EMF) has excellent energy density and combustion performance, which makes it a potential fuel additive. This article reviews the factors that affect the production of EMF from different feedstocks, including platform compounds, monosaccharides, polysaccharides, and raw lignocellulosic biomass. Focus is placed on discussing the catalytic efficiency with pros and cons of different acid catalysts, including homogeneous catalysts (i.e., liquid acids and metal salts), heterogeneous catalysts (i.e., zeolites, heteropolyacid-based hybrids, and SO3H-based catalysts), ionic liquids, mixed acid catalysts, and deep eutectic solvents (DESs). Except for the commonly used ethanol solvent, this review also summarizes the influence of the cosolvent system (e.g., ethanol/dimethylsulfoxide (DMSO), ethanol/tetrahydrofuran (THF), and ethanol/γ-valerolactone (GVL)) on the EMF yield.


Author(s):  
Fatma Zohra Ben Cheikh ◽  
Douadi Ali ◽  
Walid Boussebaa

Bioethanol is the only liquid fuel for gasoline engines that is renewable and immediately available since it is produced from vegetable raw material, also called biomass. Hence the name bioethanol refers originally to living plant, not to fossil fuel. It is produced by the transformation of biomass sugars by yeast which is responsible for the fermentation of production alcohol. The objective sought through this study is valuation of biomass that is possibly made for any product with low market value obtaining bioethanol which constitutes a product of high added value, for example the bio valuation of dates of poor quality called " Degla Bayda ". Physicochemical analyzes were carried out from the dates mill and during its alcoholic fermentation. Identification and purity verification analyze were undertaken for bioethanol. The results obtained show that fermentation conditions obtained that gave the optimum bioethanol yield was chosen of 36.25% at temperature 32°C, pH 5.0, yeast ratio 1g and fermentation time of 48 hours and the quality of our product is conformed with international standards.


2021 ◽  
Vol 42 (5) ◽  
pp. 1239-1248
Author(s):  
G. Padmapriya ◽  
◽  
V. Dhivya ◽  
M. Vishal ◽  
Y.A.J. Roshni ◽  
...  

Aim: The current study involved carrying out adaptive evolution to inculcate tolerance to hydrolysate-derived aldehyde-based inhibitors, furfural, vanillin, syringaldehyde and 4-hydroxybenzaldehyde (4-HB) for the valorization of pretreated lignocellulosic biomass. Methodology: The growth-inhibitory effects of the aforementioned inhibitors on E. coli MG1655 were investigated. The percentage of inhibition was calculated from the initial growth, followed by extrapolating the IC50 values for each inhibitor. Based on these findings, adaptation experiments were conducted for individual inhibitors at a concentration lesser than or closer to IC50. Results: The specific growth rate of cells was lowered by 2.2-, 3-, 1.3- and 5- fold when grown in the presence of furfural, vanillin, syringaldehyde and 4- hydroxybenzaldehyde (4-HB), respectively. The adapted strains which were grown in the presence of furfural (9mM), vanillin (9mM), syringaldehyde (8mM) and 4- HB (6mM) individually showed around 1.5 -2.5- fold increase in the specific growth rate as compared to the wild-type with decreased lag phases and increased final cell densities. Interpretation: The strains, subjected to adaptive evolution, resulted in increased tolerance to single inhibitors and these will further be sequentially adapted to other three inhibitors for their utilization in the valorization of pretreated lignocellulosic biomass.


2021 ◽  
Author(s):  
Yingying Cao ◽  
Dandan Chen ◽  
Ye Meng ◽  
Shunmugavel Saravanamurugan ◽  
Hu Li

Chemocatalytic production of lactic acid from biomass feedstock is a highly potential alternative route, but with prerequisites of long reaction time, high temperature, and/or a tailored catalyst. In this work,...


Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 437 ◽  
Author(s):  
Katarzyna Świątek ◽  
Stephanie Gaag ◽  
Andreas Klier ◽  
Andrea Kruse ◽  
Jörg Sauer ◽  
...  

Hydrolysis of lignocellulosic biomass is a crucial step for the production of sugars and biobased platform chemicals. Pretreatment experiments in a semi-continuous plant with diluted sulphuric acid as catalyst were carried out to measure the time-dependent formation of sugars (glucose, xylose, mannose), furfurals, and organic acids (acetic, formic, and levulinic acid) at different hydrolysis temperatures (180, 200, 220 °C) of one representative of each basic type of lignocellulose: hardwood, softwood, and grass. The addition of the acid catalyst is followed by a sharp increase in the sugar concentration. Xylose and mannose were mainly formed in the initial stages of the process, while glucose was released slowly. Increasing the reaction temperature had a positive effect on the formation of furfurals and organic acids, especially on hydroxymehtylfurfural (HMF) and levulinic acid, regardless of biomass type. In addition, large amounts of formic acid were released during the hydrolysis of miscanthus grass. Structural changes in the solid residue show a complete hydrolysis of hemicellulose at 180 °C and of cellulose at 200 °C after around 120 min reaction time. The results obtained in this study can be used for the optimisation of the hydrolysis conditions and reactor design to maximise the yields of desired products, which might be sugars or furfurals.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 484
Author(s):  
Nadezhda A. Golubkina ◽  
Viktor A. Kharchenko ◽  
Anastasia I. Moldovan ◽  
Andrey A. Koshevarov ◽  
Svetlana Zamana ◽  
...  

Celery is one of the major nutraceutical vegetable species due to the high dietary and medicinal properties of all of its plant parts. Yield, growth and produce quality of six celery genotypes belonging to leafy (Elixir and Samurai), stalk (Atlant and Primus) or root (Egor and Dobrynya) types, as well as the distribution of biomass, sugars, mineral elements and antioxidants among the different plant parts, were assessed. Within the celery root type, cultivar Dobrynya resulted in higher yield than Egor, whereas the genotype did not significantly affect the marketable plant part production of leafy and stalk types. Leaf/petiole ratios relevant to biomass, total dissolved solids, sugars, ascorbic acid, flavonoids, antioxidant activity and ash, K, Zn, Fe, Mn, Cu and Se content were significantly affected by the celery type examined. Ash content was highest in the leaves and lowest in the roots. Celery antioxidant system was characterized by highly significant relationships between ascorbic acid, polyphenols, flavonoids, antioxidant activity and Zn. Among the celery types analyzed, the highest values of chlorophyll, Fe and Mn content as well as antioxidant activity were recorded in leaves from root genotypes, which suggests interesting nutraceutical prospects of the aforementioned plant parts for human utilization.


Catalysts ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 935 ◽  
Author(s):  
Ioannis Charisteidis ◽  
Polykarpos Lazaridis ◽  
Apostolos Fotopoulos ◽  
Eleni Pachatouridou ◽  
Leonidas Matsakas ◽  
...  

Lignin, one of the three main structural biopolymers of lignocellulosic biomass, is the most abundant natural source of aromatics with a great valorization potential towards the production of fuels, chemicals, and polymers. Although kraft lignin and lignosulphonates, as byproducts of the pulp/paper industry, are available in vast amounts, other types of lignins, such as the organosolv or the hydrolysis lignin, are becoming increasingly important, as they are side-streams of new biorefinery processes aiming at the (bio)catalytic valorization of biomass sugars. Within this context, in this work, we studied the thermal (non-catalytic) and catalytic fast pyrolysis of softwood (spruce) and hardwood (birch) lignins, isolated by a hybrid organosolv–steam explosion biomass pretreatment method in order to investigate the effect of lignin origin/composition on product yields and lignin bio-oil composition. The catalysts studied were conventional microporous ZSM-5 (Zeolite Socony Mobil–5) zeolites and hierarchical ZSM-5 zeolites with intracrystal mesopores (i.e., 9 and 45 nm) or nano-sized ZSM-5 with a high external surface. All ZSM-5 zeolites were active in converting the initially produced via thermal pyrolysis alkoxy-phenols (i.e., of guaiacyl and syringyl/guaiacyl type for spruce and birch lignin, respectively) towards BTX (benzene, toluene, xylene) aromatics, alkyl-phenols and polycyclic aromatic hydrocarbons (PAHs, mainly naphthalenes), with the mesoporous ZSM-5 exhibiting higher dealkoxylation reactivity and being significantly more selective towards mono-aromatics compared to the conventional ZSM-5, for both spruce and birch lignin.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 233 ◽  
Author(s):  
Kirtika Kohli ◽  
Ravindra Prajapati ◽  
Brajendra Sharma

The production of chemicals from biomass, a renewable feedstock, is highly desirable in replacing petrochemicals to make biorefineries more economical. The best approach to compete with fossil-based refineries is the upgradation of biomass in integrated biorefineries. The integrated biorefineries employed various biomass feedstocks and conversion technologies to produce biofuels and bio-based chemicals. Bio-based chemicals can help to replace a large fraction of industrial chemicals and materials from fossil resources. Biomass-derived chemicals, such as 5-hydroxymethylfurfural (5-HMF), levulinic acid, furfurals, sugar alcohols, lactic acid, succinic acid, and phenols, are considered platform chemicals. These platform chemicals can be further used for the production of a variety of important chemicals on an industrial scale. However, current industrial production relies on relatively old and inefficient strategies and low production yields, which have decreased their competitiveness with fossil-based alternatives. The aim of the presented review is to provide a survey of past and current strategies used to achieve a sustainable conversion of biomass to platform chemicals. This review provides an overview of the chemicals obtained, based on the major components of lignocellulosic biomass, sugars, and lignin. First, important platform chemicals derived from the catalytic conversion of biomass were outlined. Later, the targeted chemicals that can be potentially manufactured from the starting or platform materials were discussed in detail. Despite significant advances, however, low yields, complex multistep synthesis processes, difficulties in purification, high costs, and the deactivation of catalysts are still hurdles for large-scale competitive biorefineries. These challenges could be overcome by single-step catalytic conversions using highly efficient and selective catalysts and exploring purification and separation technologies.


Sign in / Sign up

Export Citation Format

Share Document