carbon burial
Recently Published Documents


TOTAL DOCUMENTS

328
(FIVE YEARS 134)

H-INDEX

49
(FIVE YEARS 7)

2022 ◽  
Vol 3 (1) ◽  
Author(s):  
Katharine M. Grant ◽  
Udara Amarathunga ◽  
Jessica D. Amies ◽  
Pengxiang Hu ◽  
Yao Qian ◽  
...  

AbstractDark organic-rich layers (sapropels) have accumulated in Mediterranean sediments since the Miocene due to deep-sea dysoxia and enhanced carbon burial at times of intensified North African run-off during Green Sahara Periods (GSPs). The existence of orbital precession-dominated Saharan aridity/humidity cycles is well known, but lack of long-term, high-resolution records hinders understanding of their relationship with environmental evolution. Here we present continuous, high-resolution geochemical and environmental magnetic records for the Eastern Mediterranean spanning the past 5.2 million years, which reveal that organic burial intensified 3.2 Myr ago. We deduce that fluvial terrigenous sediment inputs during GSPs doubled abruptly at this time, whereas monsoon run-off intensity remained relatively constant. We hypothesize that increased sediment mobilization resulted from an abrupt non-linear North African landscape response associated with a major increase in arid:humid contrasts between GSPs and intervening dry periods. The timing strongly suggests a link to the onset of intensified northern hemisphere glaciation.


2022 ◽  
Author(s):  
Nina Papadomanolaki ◽  
et al.

Supplemental information and methods, Figures S1–S4, and Tables S1 and S2.<br>


2022 ◽  
Author(s):  
Nina Papadomanolaki ◽  
et al.

Supplemental information and methods, Figures S1–S4, and Tables S1 and S2.<br>


2021 ◽  
Vol 17 (6) ◽  
pp. 2515-2536
Author(s):  
Rebekah A. Stein ◽  
Nathan D. Sheldon ◽  
Sarah E. Allen ◽  
Michael E. Smith ◽  
Rebecca M. Dzombak ◽  
...  

Abstract. As atmospheric carbon dioxide (CO2) and temperatures increase with modern climate change, ancient hothouse periods become a focal point for understanding ecosystem function under similar conditions. The early Eocene exhibited high temperatures, high CO2 levels, and similar tectonic plate configuration as today, so it has been invoked as an analog to modern climate change. During the early Eocene, the greater Green River Basin (GGRB) of southwestern Wyoming was covered by an ancient hypersaline lake (Lake Gosiute; Green River Formation) and associated fluvial and floodplain systems (Wasatch and Bridger formations). The volcaniclastic Bridger Formation was deposited by an inland delta that drained from the northwest into freshwater Lake Gosiute and is known for its vast paleontological assemblages. Using this well-preserved basin deposited during a period of tectonic and paleoclimatic interest, we employ multiple proxies to study trends in provenance, parent material, weathering, and climate throughout 1 million years. The Blue Rim escarpment exposes approximately 100 m of the lower Bridger Formation, which includes plant and mammal fossils, solitary paleosol profiles, and organic remains suitable for geochemical analyses, as well as ash beds and volcaniclastic sandstone beds suitable for radioisotopic dating. New 40Ar / 39Ar ages from the middle and top of the Blue Rim escarpment constrain the age of its strata to ∼ 49.5–48.5 Myr ago during the “falling limb” of the early Eocene Climatic Optimum. We used several geochemical tools to study provenance and parent material in both the paleosols and the associated sediments and found no change in sediment input source despite significant variation in sedimentary facies and organic carbon burial. We also reconstructed environmental conditions, including temperature, precipitation (both from paleosols), and the isotopic composition of atmospheric CO2 from plants found in the floral assemblages. Results from paleosol-based reconstructions were compared to semi-co-temporal reconstructions made using leaf physiognomic techniques and marine proxies. The paleosol-based reconstructions (near the base of the section) of precipitation (608–1167 mm yr−1) and temperature (10.4 to 12.0 ∘C) were within error of, although lower than, those based on floral assemblages, which were stratigraphically higher in the section and represented a highly preserved event later in time. Geochemistry and detrital feldspar geochronology indicate a consistent provenance for Blue Rim sediments, sourcing predominantly from the Idaho paleoriver, which drained the active Challis volcanic field. Thus, because there was neither significant climatic change nor significant provenance change, variation in sedimentary facies and organic carbon burial likely reflected localized geomorphic controls and the relative height of the water table. The ecosystem can be characterized as a wet, subtropical-like forest (i.e., paratropical) throughout the interval based upon the floral humidity province and Holdridge life zone schemes. Given the mid-paleolatitude position of the Blue Rim escarpment, those results are consistent with marine proxies that indicate that globally warm climatic conditions continued beyond the peak warm conditions of the early Eocene Climatic Optimum. The reconstructed atmospheric δ13C value (−5.3 ‰ to −5.8 ‰) closely matches the independently reconstructed value from marine microfossils (−5.4 ‰), which provides confidence in this reconstruction. Likewise, the isotopic composition reconstructed matches the mantle most closely (−5.4 ‰), agreeing with other postulations that warming was maintained by volcanic outgassing rather than a much more isotopically depleted source, such as methane hydrates.


Author(s):  
Rogger E. Correa ◽  
Kai Xiao ◽  
Stephen R. Conrad ◽  
Praktan D. Wadnerkar ◽  
Alicia M. Wilson ◽  
...  

2021 ◽  
Author(s):  
Rory Flood ◽  
Margaret Georgina Milne ◽  
Graeme Swindles ◽  
Iestyn Barr ◽  
Julian Orford

The Ganges–Brahmaputra fluvial system drains the Himalayas and is one of the largest sources of terrestrial biosphere carbon to the ocean. It represents a major continental reservoir of CO2 associated with c. 1–2 billion tons of sediment transported each year. Shallow coastal environments receive substantial inputs of terrestrial carbon (900 Tg C yr−1), with allochthonous carbon capture on connected floodplains. Vegetated coastal ecosystems play a dominant role in the sequestration of carbon and operate as highly efficient carbon sinks. Mangrove sediments are subject to intense carbon-fixing processes that have a potentially high impact on the global carbon budget. The Sundarbans is the largest tidal mangrove forest in the world (10,200 km2 in area) and is located on the marine-terrestrial boundary of the Ganges-Brahmaputra delta and the Bay of Bengal, in West Bengal (India) and Bangladesh. Estimates of sedimentation on the tidal delta plain of the Ganges-Brahmaputra delta reveal mean rates of ∼1.1 cm yr−1 with accretion understood to approximately equal the regional rate of sea-level rise of ∼1.0 cm yr−1. In this study, the properties of sediments from the western Ganges-Brahmaputra delta are used to investigate controls on coastal carbon burial over the past 5,000 years. Our main findings are: (1) Beta regression of aluminium and silica ratio data is a robust method of estimating total organic carbon in sediment from the Indian Sundarbans; (2) the estimated rate of sediment deposition over last 5,000 years is between 1.0 and 2.5 mm yr−1, with uncertainty surrounding the reworked origins of sediment; and (3) temporal variation of total organic carbon accumulation through the last 5,000 years is generated by varying sedimentary depositional processes. The delivery and burial of total organic carbon is predicated on the continual supply of sediment to the Sundarbans, which future management strategies may need to consider given changing rates of deposition.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
John Parnell ◽  
Connor Brolly

AbstractThe geological record following the c. 2.3 billion years old Great Oxidation Event includes evidence for anomalously high burial of organic carbon and the emergence of widespread mountain building. Both carbon burial and orogeny occurred globally over the period 2.1 to 1.8 billion years ago. Prolific cyanobacteria were preserved as peak black shale sedimentation and abundant graphite. In numerous orogens, the exceptionally carbonaceous sediments were strongly deformed by thrusting, folding, and shearing. Here an assessment of the timing of Palaeoproterozoic carbon burial and peak deformation/metamorphism in 20 orogens shows that orogeny consistently occurred less than 200 million years after sedimentation, in a time frame comparable to that of orogens through the Phanerozoic. This implies that the high carbon burial played a critical role in reducing frictional strength and lubricating compressive deformation, which allowed crustal thickening to build Palaeoproterozoic mountain belts. Further, this episode left a legacy of weakening and deformation in 2 billion year-old crust which has supported subsequent orogenies up to the building of the Himalayas today. The link between Palaeoproterozoic biomass and long-term deformation of the Earth’s crust demonstrates the integral relationship between biosphere and lithosphere.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Daniel N. Schillereff ◽  
Richard C. Chiverrell ◽  
Jenny K. Sjöström ◽  
Malin E. Kylander ◽  
John F. Boyle ◽  
...  

AbstractOmbrotrophic peatlands are a globally important carbon store and depend on atmospheric nutrient deposition to balance ecosystem productivity and microbial decomposition. Human activities have increased atmospheric nutrient fluxes, but the impacts of variability in phosphorus supply on carbon sequestration in ombrotrophic peatlands are unclear. Here, we synthesise phosphorus, nitrogen and carbon stoichiometric data in the surface and deeper layers of mid-latitude Sphagnum-dominated peatlands across Europe, North America and Chile. We find that long-term elevated phosphorus deposition and accumulation strongly correlate with increased organic matter decomposition and lower carbon accumulation in the catotelm. This contrasts with literature that finds short-term increases in phosphorus supply stimulates rapid carbon accumulation, suggesting phosphorus deposition imposes a threshold effect on net ecosystem productivity and carbon burial. We suggest phosphorus supply is an important, but overlooked, factor governing long-term carbon storage in ombrotrophic peatlands, raising the prospect that post-industrial phosphorus deposition may degrade this carbon sink.


2021 ◽  
Author(s):  
Madison M. Douglas ◽  
Gen K. Li ◽  
Woodward W. Fischer ◽  
Joel C. Rowland ◽  
Preston C. Kemeny ◽  
...  

Abstract. Arctic river systems erode permafrost in their banks and mobilize particulate organic carbon (OC). Meandering rivers can entrain particulate OC from permafrost many meters below the depth of annual thaw, potentially enabling OC oxidation and the production of greenhouse gases. However, the amount and fate of permafrost OC that is mobilized by river erosion is uncertain. To constrain OC fluxes due to riverbank erosion and deposition, we collected riverbank and floodplain sediment samples along the Koyukuk River, which meanders through discontinuous permafrost in central Alaska. We measured sediment total OC (TOC), radiocarbon content, water content, bulk density, grain size, and floodplain stratigraphy. Radiocarbon abundance and TOC were higher in samples dominated by silt as compared to sand, which we used to map OC content onto floodplain stratigraphy and estimate carbon fluxes due to river meandering. Results showed that sediment being eroded from cutbanks and deposited as point bars had similar OC stocks (mean ± 1SD of 125.3 ± 13.1 kgOC m−2 in cutbanks versus 114.0 ± 15.7 kgOC m−2 in point bars) whether or not the banks contained permafrost. We also observed radiocarbon-depleted biospheric OC in both cutbanks and permafrost-free point bars. These results indicate that a significant fraction of aged biospheric OC that is liberated from floodplains by bank erosion is subsequently re-deposited in point bars, rather than being oxidized. The process of aging, erosion, and re-deposition of floodplain organic material may be intrinsic to river-floodplain dynamics, regardless of permafrost content.


Sign in / Sign up

Export Citation Format

Share Document