electrical permittivity
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 33)

H-INDEX

14
(FIVE YEARS 3)

Author(s):  
Luis Gustavo Martinez ◽  
Akash Dhruv ◽  
Elias Balaras ◽  
Michael Keidar

Abstract This work presents a model for an atmospheric Helium plasma interacting with normal and cancer cells. This interaction is simulated through the expansion and impingement of a gaseous jet onto targets with varying electrical permittivity. Simulation results show that for a plasma jet impinging onto two targets with different permittivity placed axis-symmetrically relative to the stagnation point of impingement, the jet is biased toward the target with lower permittivity when the target acts as a floating potential. This trend is reversed when the back surface of the target is grounded. In the case of a floating target, higher target permittivity yields a higher positive surface potential as the material experiences higher polarization in response to the net flux of electrons from the plasma onto the surface. Because of this higher surface potential, targets with higher permittivity generate a smaller electric field in the discharge column relative to materials with lower permittivity. When the back surface of the target is ground, the trend is reversed, with polarization occurring primarily on the back surface due to the response to the reservoir of positive charges introduced by ground. In the ground case, the material experiences more negative charging the front surface which induces a lower electric potential. As a result, the material with higher permittivity and a grounded back surface attracts plasma organization at the interface because of the higher local electric field. These numerical findings support experimental results presented by other researchers, which demonstrate selectivity of plasma jets towards some cancer cells more than others. The mechanism introduced here may help inform targeted treatment of specific cells, including those reported to be more resistant to plasma jets.


Cosmetics ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 6
Author(s):  
Hans Stettler ◽  
Jonathan Crowther ◽  
Alison Boxshall ◽  
Stephan Bielfeldt ◽  
Bailu Lu ◽  
...  

As new biophysical methods become available to the skin researcher, it is important to understand the type of information that they are capable of measuring, and how it relates to consumer perception of topical moisturizing products. This work was aimed at understanding how two-dimensional (2D) skin hydration mapping can be used to describe skin properties beyond the traditional ‘single number’ approach to skin hydration. Two-dimensional skin hydration measurement data were collected at baseline and after 1 week of in vivo usage of a topical moisturizing product. In addition, subject feedback regarding their skin condition obtained during the study was collected and assessed. Dividing the 2D hydration measurement device images into zones of different electrical permittivity scores enabled analysis of different aspects of the skin compared with traditional electrical skin hydration measurements. Improvement in skin flexibility as a result of use of the topical test product was demonstrated. Complete description of the skin’s hydration state through the creation of hydration histograms to describe its electrical characteristics was performed. Subject feedback data showed improvements in aspects of skin assessed using 2D hydration measurement.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7380
Author(s):  
José Miguel Monzón-Verona ◽  
Pablo Ignacio González-Domínguez ◽  
Santiago García-Alonso ◽  
Jenifer Vaswani Reboso

In this paper, a new method for characterizing the dielectric breakdown voltage of dielectric oils is presented, based on the IEC 60156 international standard. In this standard, the effective value of the dielectric breakdown voltage is obtained, but information is not provided on the distribution of Kelvin forces an instant before the dynamic behavior of the arc begins or the state of the gases that are produced an instant after the moment of appearance of the electric arc in the oil. In this paper, the behavior of the oil before and after the appearance of the electric arc is characterized by combining a low-cost CMOS imaging sensor and a new matrix of electrical permittivity associated with the dielectric oil, using the 3D cell method. In this way, we also predict the electric field before and after the electric rupture. The error compared to the finite element method is less than 0.36%. In addition, a new method is proposed to measure the kinematic viscosity of dielectric oils. Using a low-cost imaging sensor, the distribution of bubbles is measured, together with their diameters and their rates of ascent after the electric arc occurs. This method is verified using ASTM standards and data provided by the oil manufacturer. The results of these tests can be used to prevent incipient failures and evaluate preventive maintenance processes such as transformer oil replacement or recovery.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4878
Author(s):  
Takashi Fujii ◽  
Akio Oshita ◽  
Keiichiro Kashimura

The ongoing development of high-temperature processes with the use of microwaves requires new microwave absorbers that are useful at these temperatures. In this study, we propose Al4SiC4 powders as important and efficient microwave absorbers. We investigated both the behavioural microwave heating and electrical permittivity characteristics of Al4SiC4 powders with various particle sizes at 2.45 GHz. The TE103 single-mode cavity indicated that Al4SiC4 powder samples yielded different heating behaviours and dielectric constants for each particle size compared with SiC. By microwave heating ∅50 mm × 5 mm disks of Al4SiC4 and SiC, we demonstrate that for specific sizes, Al4SiC4 can be heated at a higher temperature than SiC. Finally, the results of the two-dimensional two-colour thermometer show that an energy concentration appears at the interface of the microwave-heated Al4SiC4. These phenomena, which are inconsistent in individual physical property values, can be explained without contradicting microwave heating physics.


2021 ◽  
Vol 36 (6) ◽  
pp. 779-787
Author(s):  
Mustafa Ucar

In this paper, complementary split ring resonator (SRR) based reflector to enhance the printed slot dipole (PSD) antenna performance is introduced. The numerically calculated return-loss, directivity and radiation pattern results of the PSD antenna, with (w/) and without (w/o) CSRR element etched on reflector plane are presented and investigated. Numerical analysis and modelling of the proposed design are carried out using CST Microwave Studio simulator based on the finite integration technique. According to the simulation results, with the inclusion of the CSRR-based reflector into the PSD antenna, the directivity is increased by values changes from 0.6 dB to 4.25 dB through the operation band, while an improvement in bandwidth (~2.1%) is seen. It is also shown that this improvement in antenna performance is due to the -negative (ENG) behavior of CSRR structures. Prototype of the proposed antenna is fabricated using Arlon DiClad 880 substrate with electrical permittivity ofεr= 2.2. A quite good agreement between simulation and measurement is obtained. In this study, it is shown that the radiation performance of the antenna can be increased easily by using the CSRR element as a reflector in the antenna structure with a new enhancement approach. Also, the proposed antenna with a compact size of 0.27λ× 0.41λ is appropriate for operating in IEEE 802.11b/g/n/ax (2.4 GHz) WLAN applications.


2021 ◽  
Author(s):  
Jussi Silvonen ◽  
Niko Järvelä ◽  
Markus Koppanen ◽  
Matti Järveläinen ◽  
Arto Ojuva ◽  
...  

AbstractOnline control of industrial processes by lean principle increases productivity and yields higher product quality. Polysaccharides are dissolved in liquids, such as water, in many industrial products, like paints, cosmetics and culinary products. In these products, it is important to control viscosity or create thixotropy and yield stress for product functionality. Electromagnetic field and electrical conductivity techniques were applied to a meter polysaccharide dissolution process online up to a 0.5 wt% concentration, and the resultant solution was also further tested by UV–Vis spectrophotometry. The electromagnetic field technique measures changes in the local electrical permittivity of the liquid and the interest in this research were to find out whether the changes correlate to the concentration changes during the dissolution of polymer polysaccharide. The results that were obtained showed good consistency, suggesting the feasibility of the electromagnetic field technique in online monitoring of a polysaccharide suspension concentration. Moreover, this technique gives the advantage of instant monitoring of a polysaccharide dissolution for improved process control. Graphic abstract


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2835
Author(s):  
Jacek Fal ◽  
Katarzyna Bulanda ◽  
Mariusz Oleksy ◽  
Jolanta Sobczak ◽  
Jinwen Shi ◽  
...  

Two types of graphite/diamond (GD) particles with different ash content was applied to prepare new electroconductive polylactide (PLA)-based nanocomposites. Four samples of nanocomposites for each type of GD particles with mass fraction 0.01, 0.05, 0.10, and 0.15 were prepared via an easily scalable method—melt blending. The samples were subjected to the studies of electrical properties via broadband dielectric spectroscopy. The results indicated up to eight orders of magnitude improvement in the electrical conductivity and electrical permittivity of the most loaded nanocomposites, in reference to the neat PLA. Additionally, the influence of ash content on the electrical conductivity of the nanocomposites revealed that technologically less-demanding fillers, i.e., of higher ash content, were the most beneficial in the light of nanofiller dispersibility and the final properties.


2021 ◽  
Author(s):  
Elena Renzhiglova

This thesis reports our research on developing a new method to image the electric conductivity and relative permittivity of biological tissues. The first method is Differential Frequency Magneto-Acousto-Electrical Tomography (DF-MAET) to image the electrical impedance of biological tissues with high spatial resolution. It is shown that DF-MAET signal is caused by the vibrations of the sample at a difference frequency (DF) because of the radiation force. In the second method, we investigated the possibility of using a novel mechanism for imaging the electrical permittivity of biological tissues. Theoretical study shows that a magnetic moment will be produced in biological tissues when both and ultrasound wave and an electrical field exist in the tissue. We report the results to detect this magnetic moment with both coils and electrodes attached to the tissue. We were able to detect the signal with electrodes, but its frequency dependence indicates that this signal is due to the impedance modulation by ultrasound, and that it is not related to the relative permittivity. Finally, we studied the ultrasonic vibration potentials generated in fat and muscle tissues.


2021 ◽  
Vol 288 ◽  
pp. 129318
Author(s):  
Prashant Tyagi ◽  
Nikhil Rajendra Gorhe ◽  
Ranjan Chaturvedi

Sign in / Sign up

Export Citation Format

Share Document