genetic interaction analysis
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 14)

H-INDEX

7
(FIVE YEARS 2)

mBio ◽  
2022 ◽  
Author(s):  
Norma V. Solis ◽  
Rohan S. Wakade ◽  
Virginia E. Glazier ◽  
Tomye L. Ollinger ◽  
Melanie Wellington ◽  
...  

The pathology of oral candidiasis has features of biofilm formation, a well-studied process in vitro . Based on that analogy, we hypothesized that the network of transcription factors that regulates in vitro biofilm formation has similarities and differences during oral infection.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Viola Halder ◽  
Brianna McDonnell ◽  
Rebecca Shapiro

Candida albicans is an opportunistic fungal pathogen found in the oral mucosa, the gut, the vaginal mucosa, and humans' skin. While C. albicans can cause superficial infections, severe invasive infections can occur in immunocompromised individuals. Understanding the survival mechanisms and pathogenesis of C. albicans is critical for novel antifungal drug discovery. Determining the relationships between different genes can create a genetic interaction map, which can identify complementary gene sets, central to C. albicans survival, as potential drug targets in combination therapy. A genetic approach using the CRISPR-Cas9-based genome editing platform will focus on genetic interaction analysis of C. albicans stress response genes. The ultimate goal is to create a stress response gene deletion library to study its pathogen survival role. This library of single and double stress response gene mutants will be screened under diverse growth conditions to assess their relative fitness. Genetic interaction analysis will help map out epistatic interactions between fungal genes involved in growth, survival, and pathogenesis and uncover putative targets for combination antifungal therapy based on negative or synthetic lethal genetic interactions.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Connor P. O’Meara ◽  
Lucia Guerri ◽  
Divine-Fondzenyuy Lawir ◽  
Fernando Mateos ◽  
Mary Iconomou ◽  
...  

AbstractTo capture the global gene network regulating the differentiation of immature T cells in an unbiased manner, large-scale forward genetic screens in zebrafish were conducted and combined with genetic interaction analysis. After ENU mutagenesis, genetic lesions associated with failure of T cell development were identified by meiotic recombination mapping, positional cloning, and whole genome sequencing. Recessive genetic variants in 33 genes were identified and confirmed as causative by additional experiments. The mutations affected T cell development but did not perturb the development of an unrelated cell type, growth hormone-expressing somatotrophs, providing an important measure of cell-type specificity of the genetic variants. The structure of the genetic network encompassing the identified components was established by a subsequent genetic interaction analysis, which identified many instances of positive (alleviating) and negative (synthetic) genetic interactions. Several examples of synthetic lethality were subsequently phenocopied using combinations of small molecule inhibitors. These drugs not only interfered with normal T cell development, but also elicited remission in a model of T cell acute lymphoblastic leukaemia. Our findings illustrate how genetic interaction data obtained in the context of entire organisms can be exploited for targeted interference with specific cell types and their malignant derivatives.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (4) ◽  
pp. e1009537
Author(s):  
Alon Israeli ◽  
Yogev Burko ◽  
Sharona Shleizer-Burko ◽  
Iris Daphne Zelnik ◽  
Noa Sela ◽  
...  

Morphogenesis and differentiation are important stages in organ development and shape determination. However, how they are balanced and tuned during development is not fully understood. In the compound leaved tomato, an extended morphogenesis phase allows for the initiation of leaflets, resulting in the compound form. Maintaining a prolonged morphogenetic phase in early stages of compound-leaf development in tomato is dependent on delayed activity of several factors that promote differentiation, including the CIN-TCP transcription factor (TF) LA, the MYB TF CLAU and the plant hormone Gibberellin (GA), as well as on the morphogenesis-promoting activity of the plant hormone cytokinin (CK). Here, we investigated the genetic regulation of the morphogenesis-differentiation balance by studying the relationship between LA, CLAU, TKN2, CK and GA. Our genetic and molecular examination suggest that LA is expressed earlier and more broadly than CLAU and determines the developmental context of CLAU activity. Genetic interaction analysis indicates that LA and CLAU likely promote differentiation in parallel genetic pathways. These pathways converge downstream on tuning the balance between CK and GA. Comprehensive transcriptomic analyses support the genetic data and provide insights into the broader molecular basis of differentiation and morphogenesis processes in plants.


Science ◽  
2020 ◽  
Vol 368 (6498) ◽  
pp. eaaz5667 ◽  
Author(s):  
Elena Kuzmin ◽  
Benjamin VanderSluis ◽  
Alex N. Nguyen Ba ◽  
Wen Wang ◽  
Elizabeth N. Koch ◽  
...  

Whole-genome duplication has played a central role in the genome evolution of many organisms, including the human genome. Most duplicated genes are eliminated, and factors that influence the retention of persisting duplicates remain poorly understood. We describe a systematic complex genetic interaction analysis with yeast paralogs derived from the whole-genome duplication event. Mapping of digenic interactions for a deletion mutant of each paralog, and of trigenic interactions for the double mutant, provides insight into their roles and a quantitative measure of their functional redundancy. Trigenic interaction analysis distinguishes two classes of paralogs: a more functionally divergent subset and another that retained more functional overlap. Gene feature analysis and modeling suggest that evolutionary trajectories of duplicated genes are dictated by combined functional and structural entanglement factors.


Cell Systems ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 25-38.e10 ◽  
Author(s):  
Albi Celaj ◽  
Marinella Gebbia ◽  
Louai Musa ◽  
Atina G. Cote ◽  
Jamie Snider ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document