free form
Recently Published Documents


TOTAL DOCUMENTS

4457
(FIVE YEARS 969)

H-INDEX

91
(FIVE YEARS 13)

Author(s):  
Ahmad Yahya Dawod ◽  
Aniwat Phaphuangwittayakul ◽  
Salita Angkurawaranon

<span>Traumatic brain injuries are significant effects of disability and loss of life. Physicians employ computed tomography (CT) images to observe the trauma and measure its severity for diagnosis and treatment. Due to the overlap of hemorrhage and normal brain tissues, segmentation methods sometimes lead to false results. The study is more challenging to unitize the AI field to collect brain hemorrhage by involving patient datasets employing CT scans images. We propose a novel technique free-form object model for brain injury CT image segmentation based on superpixel image processing that uses CT to analyzing brain injuries, quite challenging to create a high outstanding simple linear iterative clustering (SLIC) method. The maintains a strategic distance of the segmentation image to reduced intensity boundaries. The segmentation image contains marked red hemorrhage to modify the free-form object model. The contour labelled by the red mark is the output from our free-form object model. We proposed a hybrid image segmentation approach based on the combined edge detection and dilation technique features. The approach diminishes computational costs, and the show accomplished 96.68% accuracy. The segmenting brain hemorrhage images are achieved in the clustered region to construct a free-form object model. The study also presents further directions on future research in this domain.</span>


Structures ◽  
2022 ◽  
Vol 36 ◽  
pp. 1050-1067
Author(s):  
Guan Quan ◽  
Jiafeng Qi ◽  
Hui Wu ◽  
Jun Ye ◽  
Boqing Gao ◽  
...  
Keyword(s):  

2022 ◽  
Vol 3 (1) ◽  
pp. 1-20
Author(s):  
Amara Tariq ◽  
Marly Van Assen ◽  
Carlo N. De Cecco ◽  
Imon Banerjee

Free-form radiology reports associated with coronary computed tomography angiography (CCTA) include nuanced and complicated linguistics to report cardiovascular disease. Standardization and interpretation of such reports is crucial for clinical use of CCTA. Coronary Artery Disease Reporting and Data System (CAD-RADS) has been proposed to achieve such standardization by implementing a strict template-based report writing and assignment of a score between 0 and 5 indicating the severity of coronary artery lesions. Even after its introduction, free-form unstructured report writing remains popular among radiologists. In this work, we present our attempts at bridging the gap between structured and unstructured reporting by natural language processing. We present machine learning models that while being trained only on structured reports, can predict CAD-RADS scores by analysis of free-text of unstructured radiology reports. The best model achieves 98% accuracy on structured reports and 92% 1-margin accuracy (difference of \le 1 in the predicted and the actual scores) for free-form unstructured reports. Our model also performs well under very difficult circumstances including nuanced and widely varying terminology used for reporting cardiovascular functions and diseases, scarcity of labeled data for training our model, and uneven class label distribution.


2022 ◽  
Vol 11 (2) ◽  
pp. 430
Author(s):  
Charlotte Girard-Guyonvarc’h ◽  
Mathilde Harel ◽  
Cem Gabay

Interleukin 18 (IL-18) is a pro-inflammatory cytokine of the IL-1 family, whose activity is tightly controlled at the level of production, as well as signalization. Notably, it is buffered by its natural inhibitor, IL-18 binding protein (IL-18BP), which is massively present in circulation in normal and in most pathological conditions, thus preventing harmful pro-inflammatory systemic effects of IL-18. IL-18 has long been considered to be involved in the pathophysiology of various inflammatory diseases. However, a first clinical trial using recombinant IL-18BP for the treatment of rheumatoid arthritis and psoriasis gave disappointing results. Direct measurements of unbound, bioactive, free form of circulating IL-18 demonstrated that IL-18 was more specifically involved in adult-onset Still’s disease (AOSD) and systemic juvenile idiopathic arthritis (sJIA) but also in their most severe complication, macrophage activation syndrome (MAS). More importantly, administration of recombinant IL-18BP to patients with AOSD, and sJIA with MAS, showed promising results. This review summarizes available data regarding IL-18 and IL-18BP in AOSD and sJIA in mouse models and humans and shows the importance of IL-18/IL-18BP imbalance in these conditions, leading to the conclusion that IL-18, particularly free IL-18, may be a useful biomarker in these diseases and an interesting therapeutic target.


Author(s):  
Jaikumar Sankar ◽  
Liu Yang

Abstract This work focuses on investigating the time of sinking of a Saxon bowl proposed by ‘International Young Physicists’ Tournament in 2020. A quasi-static model is built to simulate the motion path of the bowl and predict the sinking time subsequently. The model assumes an open axisymmetric bowl with a hole in its base. The hole is modelled as a pipe for which the flow profile is governed by a modified Bernoulli’s equation which has a Coefficient of Discharge (C_d) added to account for energy losses. The motion of the entire bowl is assumed to be in quasi-static equilibrium for an infinitesimal time interval to calculate the volumetric flow rate through the hole. The model is used to predict the sinking times of various bowls against independent variables - hole radius, bowl dimensions, mass of bowl, mass distribution of bowl, and Coefficient of Discharge - and predict the motion path of bowls of different, axisymmetric geometries. Characterisation of C_d was done by draining a bowl filled with water and measuring the time taken to do so. Experimental verification was completed through measuring sinking times of 3D printed hemispherical bowls of the different variables in water. Motion tracking of bowls with different geometries was done using computational pixel tracking software to verify the model’s predictive power. Data from experiments for sinking time against the variables corroborate with the model to a great degree. The motion path tracked, matched the modelled motion path to a high degree for bowls of different shapes, namely a hemisphere, cylinder, frustum, and a free-form axisymmetric shape. The work is poised for an undergraduate level of readership.


2022 ◽  
Author(s):  
Natalia Klanovicz ◽  
Fábio Spitza Stefanski ◽  
Aline Frumi Camargo ◽  
William Michelon ◽  
Helen Treichel ◽  
...  

Abstract BACKGROUND Our study aimed to characterize and prospect immobilization strategies for a novel fungal peroxidase - POD (EC 1.11.1.7) and to insert it in the context of pollutant remediation, since these compounds pose risks to human and environmental health. The enzymatic extract was obtained by submerged fermentation of the fungus Trichoderma koningiopsis in an alternative substrate, consisting of fresh microalgal biomass. The immobilization efficiency was evaluated by monitoring the residual activity (RA) and the discoloration potential (DP) of a synthetic dye solution. Concomitantly, the catalytic properties of free POD were explored, and the most promising storage strategy to maintain the enzymatic activity was studied. RESULTS The novel guaiacol peroxidase expressed specific activity of up to 7801 U mg−1 in the free form, showing stability when subjected to up to 80°C in a pH range between 4.0-8.0. Furthermore, the bioproduct immobilized on magnetic nanoparticles expressed up to 689% RA and 100% DP. An increase in the RA of the enzyme, both in free and immobilized form, was also observed after storage for up to 8 months. The synthesized magnetic nanozymes showed good reusability, maintaining 13546 U mg−1 after ten cycles and removing 94% of color in a second batch. Toxicological evaluation with Allium cepa indicated that the enzymatic process of color removal with immobilized POD was essential to eliminate genotoxic effects. CONCLUSION T. koningiopsis peroxidase production and immobilization presented in our work are promising for the enzyme market and for the wastewater treatment technologies, considering its high bioxidative potential.


2022 ◽  
Vol 72 (4) ◽  
pp. e433
Author(s):  
B. Agame-Lagunes ◽  
M. Alegria-Rivadeneyra ◽  
A. Alexander-Aguilera ◽  
R. Quintana-Castro ◽  
C. Torres-Palacios ◽  
...  

Alternative therapies for cancer treatment have been developed using bioactive compounds such as betulinic acid (BA). The objective of this study was to investigate the bioactivity of BA in its free form and compare it with its nano-encapsulated form under a skin carcinogenesis protocol in a genetically modified murine model. K14E6 and FVB mice were divided into four groups to be treated with free BA and with betulinic acid nanoemulsion (BANE). Lecithin enriched with medium chain fatty acids (MCFAs) was employed as an emulsifier to prepare the nanoemulsions with a mean droplet size of 40 nm. Skin tumors were induced by exposure to DMBA and TPA directly to the transgenic mice. Tumor development was completely inhibited by BANE and by 70% with free BA. This was validated by histological sections and the gene expression of the Cdk4 and Casp8 genes.


Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Juho Park ◽  
Sanmun Kim ◽  
Daniel Wontae Nam ◽  
Haejun Chung ◽  
Chan Y. Park ◽  
...  

Abstract Nanophotonic devices have enabled microscopic control of light with an unprecedented spatial resolution by employing subwavelength optical elements that can strongly interact with incident waves. However, to date, most nanophotonic devices have been designed based on fixed-shape optical elements, and a large portion of their design potential has remained unexplored. It is only recently that free-form design schemes have been spotlighted in nanophotonics, offering routes to make a break from conventional design constraints and utilize the full design potential. In this review, we systematically overview the nascent yet rapidly growing field of free-form nanophotonic device design. We attempt to define the term “free-form” in the context of photonic device design, and survey different strategies for free-form optimization of nanophotonic devices spanning from classical methods, adjoint-based methods, to contemporary machine-learning-based approaches.


2022 ◽  
Vol 5 (4) ◽  
pp. e202101252
Author(s):  
Belén Chaves-Arquero ◽  
Santiago Martínez-Lumbreras ◽  
Sergio Camero ◽  
Clara M Santiveri ◽  
Yasmina Mirassou ◽  
...  

Heterodimerization of RNA binding proteins Nrd1 and Nab3 is essential to communicate the RNA recognition in the nascent transcript with the Nrd1 recognition of the Ser5-phosphorylated Rbp1 C-terminal domain in RNA polymerase II. The structure of a Nrd1–Nab3 chimera reveals the basis of heterodimerization, filling a missing gap in knowledge of this system. The free form of the Nrd1 interaction domain of Nab3 (NRID) forms a multi-state three-helix bundle that is clamped in a single conformation upon complex formation with the Nab3 interaction domain of Nrd1 (NAID). The latter domain forms two long helices that wrap around NRID, resulting in an extensive protein–protein interface that would explain the highly favorable free energy of heterodimerization. Mutagenesis of some conserved hydrophobic residues involved in the heterodimerization leads to temperature-sensitive phenotypes, revealing the importance of this interaction in yeast cell fitness. The Nrd1–Nab3 structure resembles the previously reported Rna14/Rna15 heterodimer structure, which is part of the poly(A)-dependent termination pathway, suggesting that both machineries use similar structural solutions despite they share little sequence homology and are potentially evolutionary divergent.


2022 ◽  
Vol 8 ◽  
Author(s):  
Lilite Sadovska ◽  
Jānis Auders ◽  
Laura Keiša ◽  
Nadezhda Romanchikova ◽  
Laila Silamiķele ◽  
...  

Increasing evidence suggests that regular physical exercise not only reduces the risk of cancer but also improves functional capacity, treatment efficacy and disease outcome in cancer patients. At least partially, these effects are mediated by the secretome of the tissues responding to exercise. The secreted molecules can be released in a carrier-free form or enclosed into extracellular vesicles (EVs). Several recent studies have shown that EVs are actively released into circulation during physical exercise. Here, we for the first time investigated the effects of exercise-induced EVs on the progression of cancer in an F344 rat model of metastatic prostate cancer. Although we did not observe a consistent increase in the circulating EV levels, RNA sequencing analysis demonstrated substantial changes in the RNA content of EVs collected before and immediately after forced wheel running exercise as well as differences between EVs from runners at resting state and sedentary rats. The major RNA biotype in EVs was mRNA, followed by miRNA and rRNA. Molecular functions of differentially expressed RNAs reflected various physiological processes including protein folding, metabolism and regulation of immune responses triggered by the exercise in the parental cells. Intravenous administration of exercise-induced EVs into F344 rats with orthotopically injected syngeneic prostate cancer cells PLS10, demonstrated reduction of the primary tumor volume by 35% and possibly—attenuation of lung metastases. Hence, our data provide the first evidence that exercise-induced EVs may modulate tumor physiology and delay the progression of cancer.


Sign in / Sign up

Export Citation Format

Share Document