network activity
Recently Published Documents


TOTAL DOCUMENTS

1947
(FIVE YEARS 719)

H-INDEX

87
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Brianna K Unda ◽  
Leon Chalil ◽  
Sehyoun Yoon ◽  
Savannah Kilpatrick ◽  
Sansi Xing ◽  
...  

Copy number variations (CNV) are associated with psychiatric and neurodevelopmental disorders (NDDs), and most, including the recurrent 15q13.3 microdeletion disorder, have unknown disease mechanisms. We used a heterozygous 15q13.3 microdeletion mouse model and patient iPSC-derived neurons to reveal developmental defects in neuronal maturation and network activity. To identify the underlying molecular dysfunction, we developed a neuron-specific proximity-labeling proteomics (BioID2) pipeline, combined with patient mutations, to target the 15q13.3 CNV genetic driver OTUD7A. OTUD7A is an emerging independent NDD risk gene with no known function in the brain, but has putative deubiquitinase (DUB) function. The OTUD7A protein-protein interaction (PPI) network revealed interactions with synaptic, axonal, and cytoskeletal proteins and was enriched for known ASD and epilepsy risk genes. The interactions between OTUD7A and the NDD risk genes Ankyrin-G (Ank3) and Ankyrin-B (Ank2) were disrupted by an epilepsy-associated OTUD7A L233F variant. Further investigation of Ankyrin-G in mouse and human 15q13.3 microdeletion and OTUD7AL233F/L233F models revealed protein instability, increased polyubiquitination, and decreased levels in the axon initial segment (AIS), while structured illumination microscopy identified reduced Ankyrin-G nanodomains in dendritic spines. Functional analysis of human 15q13.3 microdeletion and OTUD7AL233F/L233F models revealed shared and distinct impairments to axonal growth and intrinsic excitability. Importantly, restoring OTUD7A or Ankyrin-G expression in 15q13.3 microdeletion neurons led to a reversal of abnormalities. These data reveal a critical OTUD7A-Ankyrin pathway in neuronal development, which is impaired in the 15q13.3 microdeletion syndrome, leading to neuronal dysfunction. Further, our study highlights the utility of targeting CNV genes using cell-type specific proteomics to identify shared and unexplored disease mechanisms across NDDs.


2022 ◽  
Author(s):  
Alena Kozlova ◽  
Siwei Zhang ◽  
Alex V. Kotlar ◽  
Brendan Jamison ◽  
Hanwen Zhang ◽  
...  

Identifying causative gene(s) within disease-associated large genomic regions of copy number variants (CNVs) is challenging. Here, by targeted sequencing of genes within schizophrenia (SZ)-associated CNVs in 1,779 SZ cases and 1,418 controls, we identified three rare putative loss-of-function (LoF) mutations in OTU deubiquitinase 7A (OTUD7A) within the 15q13.3 deletion in cases, but none in controls. To tie OTUD7A LoF with any SZ-relevant cellular phenotypes, we modeled the OTUD7A LoF mutation, rs757148409, in human induced pluripotent stem cell (hiPSC)-derived induced excitatory neurons (iNs) by CRISPR/Cas9 engineering. The mutant iNs showed a ~50% decrease in OTUD7A expression without undergoing nonsense-mediated mRNA decay. The mutant iNs also exhibited marked reduction of dendritic complexity, density of synaptic proteins GluA1 and PSD-95, and neuronal network activity. Congruent with the neuronal phenotypes in mutant iNs, our transcriptomic analysis showed that the set of OTUD7A LoF-downregulated genes was enriched for those relating to synapse development and function, and was associated with SZ and other neuropsychiatric disorders. These results suggest that OTUD7A LoF impairs synapse development and neuronal function in human neurons, providing mechanistic insight into the possible role of OTUD7A in driving neuropsychiatric phenotypes associated with the 15q13.3 deletion.


2022 ◽  
Vol 14 ◽  
Author(s):  
Davide Warm ◽  
Jonas Schroer ◽  
Anne Sinning

Throughout early phases of brain development, the two main neural signaling mechanisms—excitation and inhibition—are dynamically sculpted in the neocortex to establish primary functions. Despite its relatively late formation and persistent developmental changes, the GABAergic system promotes the ordered shaping of neuronal circuits at the structural and functional levels. Within this frame, interneurons participate first in spontaneous and later in sensory-evoked activity patterns that precede cortical functions of the mature brain. Upon their subcortical generation, interneurons in the embryonic brain must first orderly migrate to and settle in respective target layers before they can actively engage in cortical network activity. During this process, changes at the molecular and synaptic level of interneurons allow not only their coordinated formation but also the pruning of connections as well as excitatory and inhibitory synapses. At the postsynaptic site, the shift of GABAergic signaling from an excitatory towards an inhibitory response is required to enable synchronization within cortical networks. Concomitantly, the progressive specification of different interneuron subtypes endows the neocortex with distinct local cortical circuits and region-specific modulation of neuronal firing. Finally, the apoptotic process further refines neuronal populations by constantly maintaining a controlled ratio of inhibitory and excitatory neurons. Interestingly, many of these fundamental and complex processes are influenced—if not directly controlled—by electrical activity. Interneurons on the subcellular, cellular, and network level are affected by high frequency patterns, such as spindle burst and gamma oscillations in rodents and delta brushes in humans. Conversely, the maturation of interneuron structure and function on each of these scales feeds back and contributes to the generation of cortical activity patterns that are essential for the proper peri- and postnatal development. Overall, a more precise description of the conducting role of interneurons in terms of how they contribute to specific activity patterns—as well as how specific activity patterns impinge on their maturation as orchestra members—will lead to a better understanding of the physiological and pathophysiological development and function of the nervous system.


2022 ◽  
Vol 2161 (1) ◽  
pp. 012043
Author(s):  
Ananya Devarakonda ◽  
Nilesh Sharma ◽  
Prita Saha ◽  
S Ramya

Abstract As most of the population acquires access to the internet, protecting online identity from threats of confidentiality, integrity, and accessibility becomes an increasingly important problem to tackle. By definition, a network intrusion detection system (IDS) helps pinpoint and identify anomalous network traffic to bring forward and classify suspicious activity. It is a fundamental part of network security and provides the first line of defense against a potential attack by alerting an administrator or appropriate personnel of possible malicious network activity. Several academic publications propose various artificial intelligence (AI) methods for an accurate network intrusion detection system (IDS). This paper outlines and compares four AI methods to train two benchmark datasets- the KDD’99 and the NSL-KDD. Apart from model selection, data preprocessing plays a vital role in contributing to accurate solutions, and thus, we propose a simple yet effective data preprocessing method. We also evaluate and compare the accuracy and performance of four popular models- decision tree (DT), multi-layer perceptron (MLP), random forest (RF), and a stacked autoencoder (SAE) model. Of the four methods, the random forest classifier showed the most consistent and accurate results.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 106
Author(s):  
Anssi Pelkonen ◽  
Cristiana Pistono ◽  
Pamela Klecki ◽  
Mireia Gómez-Budia ◽  
Antonios Dougalis ◽  
...  

Human pluripotent stem cell (hPSC)-derived neuron cultures have emerged as models of electrical activity in the human brain. Microelectrode arrays (MEAs) measure changes in the extracellular electric potential of cell cultures or tissues and enable the recording of neuronal network activity. MEAs have been applied to both human subjects and hPSC-derived brain models. Here, we review the literature on the functional characterization of hPSC-derived two- and three-dimensional brain models with MEAs and examine their network function in physiological and pathological contexts. We also summarize MEA results from the human brain and compare them to the literature on MEA recordings of hPSC-derived brain models. MEA recordings have shown network activity in two-dimensional hPSC-derived brain models that is comparable to the human brain and revealed pathology-associated changes in disease models. Three-dimensional hPSC-derived models such as brain organoids possess a more relevant microenvironment, tissue architecture and potential for modeling the network activity with more complexity than two-dimensional models. hPSC-derived brain models recapitulate many aspects of network function in the human brain and provide valid disease models, but certain advancements in differentiation methods, bioengineering and available MEA technology are needed for these approaches to reach their full potential.


2021 ◽  
Author(s):  
Xulin Liu ◽  
Lorraine K Tyler ◽  
James B Rowe ◽  
Kamen A Tsvetanov ◽  

Cognitive ageing is a complex process which requires multimodal approach. Neuroimaging can provide insights into brain morphology, functional organization and vascular dynamics. However, most neuroimaging studies of ageing have focused on each imaging modality separately, limiting the understanding of interrelations between processes identified by different modalities and the interpretation of neural correlates of cognitive decline in ageing. Here, we used linked independent component analysis as a data-driven multimodal approach to jointly analyze magnetic resonance imaging of grey matter density, cerebrovascular, and functional network topographies. Neuroimaging and behavioural data (n = 215) from the Cambridge Centre for Ageing and Neuroscience study were used, containing healthy subjects aged 18 to 88. In the output components, fusion was found between structural and cerebrovascular topographies in multiple components with cognitive-relevance across the lifespan. A component reflecting global atrophy with regional cerebrovascular changes and a component reflecting right frontoparietal network activity were correlated with fluid intelligence over and above age and gender. No meaningful fusion between functional network topography and structural or cerebrovascular signals was observed. We propose that integrating multiple neuroimaging modalities allows to better characterize brain pattern variability and to differentiate brain changes in healthy ageing.


2021 ◽  
Vol 15 ◽  
Author(s):  
Vegard Fiskum ◽  
Axel Sandvig ◽  
Ioanna Sandvig

The effects of hypoxia, or reduced oxygen supply, to brain tissue can be disastrous, leading to extensive loss of function. Deoxygenated tissue becomes unable to maintain healthy metabolism, which leads to increased production of reactive oxygen species (ROS) and loss of calcium homoeostasis, with damaging downstream effects. Neurons are a highly energy demanding cell type, and as such they are highly sensitive to reductions in oxygenation and some types of neurons such as motor neurons are even more susceptible to hypoxic damage. In addition to the immediate deleterious effects hypoxia can have on neurons, there can be delayed effects which lead to increased risk of developing neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), even if no immediate consequences are apparent. Furthermore, impairment of the function of various hypoxia-responsive factors has been shown to increase the risk of developing several neurodegenerative disorders. Longitudinal assessment of electrophysiological network activity is underutilised in assessing the effects of hypoxia on neurons and how their activity and communication change over time following a hypoxic challenge. This study utilised multielectrode arrays and motor neuron networks to study the response to hypoxia and the subsequent development of the neuronal activity over time, as well as the effect of silencing network activity during the hypoxic challenge. We found that motor neuron networks exposed to hypoxic challenge exhibited a delayed fluctuation in multiple network activity parameters compared to normoxic networks. Silencing of activity during the hypoxic challenge leads to maintained bursting activity, suggesting that functional outcomes are better maintained in these networks and that there are activity-dependent mechanisms involved in the network damage following hypoxia.


2021 ◽  
Vol 18 (1) ◽  
pp. 45-61
Author(s):  
Albina R. Sadykova ◽  
Irina V. Levchenko ◽  
Lyudmila I. Kartashova

Problem and goal. The practical (pedagogical) training sites based on Moscow schools in the context of effective development of the resources of the Moscow Electronic School by future computer science teachers are analyzed. The goal is to identify the correlation of the digital footprint obtained as a result of the development of the school network activity index based on data on the actions of teachers and students in e-learning environments and of educational organizations identification corresponding to this index, as well as the methodological activity of schools in Moscow - the bases of practical (pedagogical) training of future computer science teachers. Methodology. The analysis of regulatory documents and the database of Moscow schools, where the Moscow City University students of the Computer Science direction are engaged in practical (pedagogical) training, reflection on the content of the knowledge obtained, search for criteria for selecting basic schools for conducting practical (pedagogical) training of future computer science teachers, local pedagogical experiment were used. Results. It was found out that the activity of schools in the development and use of educational resources of the Moscow Electronic School is not a prerequisite for cooperation with these schools. At the same time, the knowledge of information technologies, including the technology of working with the resources of the Moscow Electronic School, by future subject teachers, is an integral part of the professional competence of a modern teacher, and especially a computer science teacher. Conclusion. The basic criteria for selecting sites for industrial practices of future computer science teachers, in particular students of the Moscow City University, are proposed. The formulated criteria for selecting basic schools for conducting practical (pedagogical) training of university students will allow them to successfully solve the tasks set for this type of educational activity, achieve their goals and form professional and pedagogical competencies.


2021 ◽  
Vol 14 ◽  
Author(s):  
Chiara Tocco ◽  
Michele Bertacchi ◽  
Michèle Studer

The assembly and maturation of the mammalian brain result from an intricate cascade of highly coordinated developmental events, such as cell proliferation, migration, and differentiation. Any impairment of this delicate multi-factorial process can lead to complex neurodevelopmental diseases, sharing common pathogenic mechanisms and molecular pathways resulting in multiple clinical signs. A recently described monogenic neurodevelopmental syndrome named Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) is caused by NR2F1 haploinsufficiency. The NR2F1 gene, coding for a transcriptional regulator belonging to the steroid/thyroid hormone receptor superfamily, is known to play key roles in several brain developmental processes, from proliferation and differentiation of neural progenitors to migration and identity acquisition of neocortical neurons. In a clinical context, the disruption of these cellular processes could underlie the pathogenesis of several symptoms affecting BBSOAS patients, such as intellectual disability, visual impairment, epilepsy, and autistic traits. In this review, we will introduce NR2F1 protein structure, molecular functioning, and expression profile in the developing mouse brain. Then, we will focus on Nr2f1 several functions during cortical development, from neocortical area and cell-type specification to maturation of network activity, hippocampal development governing learning behaviors, assembly of the visual system, and finally establishment of cortico-spinal descending tracts regulating motor execution. Whenever possible, we will link experimental findings in animal or cellular models to corresponding features of the human pathology. Finally, we will highlight some of the unresolved questions on the diverse functions played by Nr2f1 during brain development, in order to propose future research directions. All in all, we believe that understanding BBSOAS mechanisms will contribute to further unveiling pathophysiological mechanisms shared by several neurodevelopmental disorders and eventually lead to effective treatments.


Sign in / Sign up

Export Citation Format

Share Document