field pattern
Recently Published Documents


TOTAL DOCUMENTS

628
(FIVE YEARS 102)

H-INDEX

34
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Wenhan Zhao ◽  
Junqiao Wang ◽  
Ran Li ◽  
Bin Zhang

Abstract In this paper, a dual-band metamaterial absorber (MMA) with wide-angle and high absorptivity is proposed. The MMA consists of two silver layers separated by a dielectric layer. Its top resonant element is constituted by two concentric ring resonators connected with four strips. Based on electromagnetic field simulation, the proposed MMA has two narrow absorption peaks with an absorption rate of 99.9% at 711 nm and 99.8% at 830 nm, and the corresponding line width of the two absorption peaks are only 9.7 nm and 9.8 nm. The dual-band MMA shows high absorptivity under wide incident angles. The simulated field pattern shows that dual-band perfect absorption is the combined result of the interaction of two concentric ring resonators and unit cell coupling. In addition, the hexapole plasmon mode can be observed at the outer ring at one absorption peak. The narrow plasmon resonance has a potential application in optical sensing, and can be used to measure the concentration of aqueous glucose with two frequency channels. The proposed MMA with high absorptivity is simple to manufacture, and has other potential applications, such as narrow-band filters, energy storage device, and so on.


2022 ◽  
Vol 2022 ◽  
pp. 1-6
Author(s):  
Yun Jeong Lee ◽  
Seung Chan Lee ◽  
Seo Young Wy ◽  
Hoo Young Lee ◽  
Hyang Lim Lee ◽  
...  

Purpose. To analyze ocular manifestations, visual field (VF) pattern, and VF test performance in traumatic brain injury (TBI) and stroke patients. Methods. This retrospective, cross-sectional study included 118 patients (236 eyes) with TBI and stroke who had undergone VF testing by standard automated perimetry with the central 24-2 threshold test. Clinical features including best-corrected visual acuity (BCVA), intraocular pressure (IOP), ocular manifestations, and VF test results including VF defect pattern, reliability, and global indices were analyzed and compared between the TBI and stroke patients. Results. In TBI patients, ocular manifestations included strabismus (11.1%), cataract (4.2%), and glaucoma suspect (2.8%), whereas in stroke patients, cataract (15.2%), strabismus (8.5%), diabetic retinopathy (4.9%), extraocular movement (EOM) limitation (3.0%), glaucoma suspect (3.0%), nystagmus (2.4%), drusen (1.2%), and vitreous hemorrhage (1.2%) were found. The VF test results showed that 47 eyes (85.5%) in TBI and 86 (65.2%) in stroke had VF defect; in TBI, the scattered pattern was the most common (56.4%), followed by homonymous hemianopsia (14.5%), homonymous quadrantanopia (10.9%), and total defect (3.6%), whereas in stroke, homonymous hemianopsia was the most common (31.8%), followed by scattered pattern (16.7%), homonymous quadrantanopia (12.1%), and total defect (4.5%). Only 15 eyes (27.3%) in TBI and 32 (24.2%) in stroke showed reliable VF indices. The mean deviation (MD) was −10.5 ± 7.1 dB in TBI and −9.5 ± 6.8 dB in stroke, and the pattern standard deviation (PSD) was 4.9 ± 3.3 dB in TBI and 6.1 ± 3.9 dB in stroke, without statistically significant differences between the two groups. Conclusion. Various ocular manifestations were found, and a considerable proportion of patients were experiencing VF defects and showed unreliable VF test performance. Our findings suggest that accurate evaluation and rehabilitation of visual function should be a matter of greater concern and emphasis in the management of TBI and stroke patients, besides systemic diseases.


2021 ◽  
Vol 64 (6) ◽  
pp. PE660
Author(s):  
Andrei Bala ◽  
Mircea Radulian ◽  
Dragos Toma-Danila

   Vrancea seismogenic zone in the South-Eastern Carpathians is characterized by localized intermediate-depth seismicity. Due to its complex geodynamics and large strain release, Vrancea represents a key element in the Carpatho-Pannonian system. Data from a recently compiled catalogue of fault plane solutions (REFMC) are inverted to evaluate stress regime in Vrancea on depth. A single predominant downdip extensive regime is obtained in all considered clusters, including the crustal layers located above the Vrancea slab. The prevalent stress regime confirms previous investigations and requires some mantle-crust coupling. The S3 principal stress is close to vertical, while S1 and S2 are horizontal, oriented perpendicularly and respectively tangentially to the Carpathians Arc bend. This configuration is present at any depth level. According to seismicity patterns, there are two main active segments in the Vrancea intermediate-depth domain, at 55 – 105 km and 105 – 180 km, both able to generate major events. The configuration of the tectonic stresses as resulted from inversion is similar in both segments. Also, high fault instability (I > 0.95) is characterizing the segments. The only notable difference is given by the friction and stress ratio parameters which drop down in the bottom segment from μ = 0.95 to μ = 0.55 and from R = 0.51 to R = 0.29. This variation is attributed to possible weakening processes activated below 100 km depth and can explain the intensification of seismicity production as earthquake rate and average energy release in the lower segment versus the upper segment. 


2021 ◽  
Author(s):  
◽  
Farzaneh Fadakar Masouleh

<p>Conventional optics suffer from a fundamental resolution limit due to the nature of light. The near-field superlens concept was introduced two decades ago, and its theory for enabling high resolution imaging is well-established now. Initially, this superlens, which has a simple setup, became a hot topic given the proposition of overcoming the diffraction limit. It has been demonstrated that a near-field superlens can reconstruct images using evanescent waves emanating from small objects by means of resonant excitations on the surface of the superlens. A modified version of the superlens named the far-field superlens is theorized to be able to project the near-field subwavelength information to the far-field region. By design, the far-field superlens is a near-field superlens with nanostructures added on top of it. These nanostructures, referred to as diffraction gratings help couple object information available in the evanescent waves to the far-field. Work reported in this thesis is divided to two major sections. The first describes the modelling technique that investigates the performance of a far-field superlens. This section focuses on evaluating the impact of the diffraction gratings geometry and the object size on the far-field superlens performance as well as the resulting far-field pattern. It was shown that a far-field superlens with a nanograting having a duty cycle of 40% to 50% produces the maximum intensity and contrast in the far-field interactions. For periodic rectangular objects, an inverse-trapezoidal nanograting was shown to provide the best contrast and intensity for far-field interactions. The minimal simulation domain to model a symmetric far-field superlens design was determined both in 2D and 3D. This input reduced the required modelling time and resources. Finally, a 3D far-field superlens model was proposed, and the effect of light polarization on the far-field pattern was studied. The second section of this thesis contains the experimental study that explores a new material as a potential candidate for the construction of far-field superlens. The material conventionally used for superlens design is silver, as its plasmonic properties are well-established. However, scaling down silver features to the nanoscale introduces fundamental fabrication challenges. Furthermore, silver oxidizes due to its reactions with sulphur compounds at ambient conditions, which means that operating a silver far-field superlens is only possible in a well-controlled environment. This disagrees with our proposed concept of a low-cost and robust superlens imaging device. On the other hand, highly doped semiconductors are emerging candidates for plasmonic applications due to the possibility of tuning their optical and electrical properties during the fabrication process. While the working principle of a superlens is independent of the plasmonic material of choice, every plasmonic material has a particular range of operating wavelengths. The pros and cons of each plasmonic material are usually identified once used experimentally. In this work, aluminium-doped zinc oxide was the proposed material of choice for the far-field superlens design. The second part of this thesis details the characterization results of the optical, electrical and structural properties of this proposed alternative. Our aluminium-doped zinc oxide samples were highly transparent for large parts of the spectrum. Their carrier concentration was of the order of 10+20 cm-3, and a resistivity of about 10-3 Ω.cm was achieved. The modelled dielectric permittivity for the studied samples showed a cross-over frequency in the near-infrared region, with the highest plasma frequency achieved in this study being 4710 cm-1.</p>


2021 ◽  
Author(s):  
◽  
Farzaneh Fadakar Masouleh

<p>Conventional optics suffer from a fundamental resolution limit due to the nature of light. The near-field superlens concept was introduced two decades ago, and its theory for enabling high resolution imaging is well-established now. Initially, this superlens, which has a simple setup, became a hot topic given the proposition of overcoming the diffraction limit. It has been demonstrated that a near-field superlens can reconstruct images using evanescent waves emanating from small objects by means of resonant excitations on the surface of the superlens. A modified version of the superlens named the far-field superlens is theorized to be able to project the near-field subwavelength information to the far-field region. By design, the far-field superlens is a near-field superlens with nanostructures added on top of it. These nanostructures, referred to as diffraction gratings help couple object information available in the evanescent waves to the far-field. Work reported in this thesis is divided to two major sections. The first describes the modelling technique that investigates the performance of a far-field superlens. This section focuses on evaluating the impact of the diffraction gratings geometry and the object size on the far-field superlens performance as well as the resulting far-field pattern. It was shown that a far-field superlens with a nanograting having a duty cycle of 40% to 50% produces the maximum intensity and contrast in the far-field interactions. For periodic rectangular objects, an inverse-trapezoidal nanograting was shown to provide the best contrast and intensity for far-field interactions. The minimal simulation domain to model a symmetric far-field superlens design was determined both in 2D and 3D. This input reduced the required modelling time and resources. Finally, a 3D far-field superlens model was proposed, and the effect of light polarization on the far-field pattern was studied. The second section of this thesis contains the experimental study that explores a new material as a potential candidate for the construction of far-field superlens. The material conventionally used for superlens design is silver, as its plasmonic properties are well-established. However, scaling down silver features to the nanoscale introduces fundamental fabrication challenges. Furthermore, silver oxidizes due to its reactions with sulphur compounds at ambient conditions, which means that operating a silver far-field superlens is only possible in a well-controlled environment. This disagrees with our proposed concept of a low-cost and robust superlens imaging device. On the other hand, highly doped semiconductors are emerging candidates for plasmonic applications due to the possibility of tuning their optical and electrical properties during the fabrication process. While the working principle of a superlens is independent of the plasmonic material of choice, every plasmonic material has a particular range of operating wavelengths. The pros and cons of each plasmonic material are usually identified once used experimentally. In this work, aluminium-doped zinc oxide was the proposed material of choice for the far-field superlens design. The second part of this thesis details the characterization results of the optical, electrical and structural properties of this proposed alternative. Our aluminium-doped zinc oxide samples were highly transparent for large parts of the spectrum. Their carrier concentration was of the order of 10+20 cm-3, and a resistivity of about 10-3 Ω.cm was achieved. The modelled dielectric permittivity for the studied samples showed a cross-over frequency in the near-infrared region, with the highest plasma frequency achieved in this study being 4710 cm-1.</p>


2021 ◽  
Vol 923 (1) ◽  
pp. 82
Author(s):  
Dylan M. Paré ◽  
Cormac R. Purcell ◽  
Cornelia C. Lang ◽  
Mark R. Morris ◽  
James A. Green

Abstract The Radio Arc is a system of organized nonthermal filaments (NTFs) located within the Galactic center (GC) region of the Milky Way. Recent observations of the Radio Arc NTFs revealed a magnetic field that alternates between being parallel and rotated with respect to the orientation of the filaments. This pattern is in stark contrast to the predominantly parallel magnetic field orientations observed in other GC NTFs. To help elucidate the origin of this pattern, we analyze spectro-polarimetric data of the Radio Arc NTFs using an Australian Telescope Compact Array data set covering the continuous frequency range from ∼4 to 11 GHz at a spectral resolution of 2 MHz. We fit depolarization models to the spectral polarization data to characterize Faraday effects along the line of sight. We assess whether structures local to the Radio Arc NTFs may contribute to the unusual magnetic field orientation. External Faraday effects are identified as the most likely origin of the rotation observed for the Radio Arc NTFs; however, internal Faraday effects are also found to be likely in regions of parallel magnetic field. The increased likelihood of internal Faraday effects in parallel magnetic field regions may be attributed to the effects of structures local to the GC. One such structure could be the Radio Shell local to the Radio Arc NTFs. Future studies are needed to determine whether this alternating magnetic field pattern is present in other multi-stranded NTFs, or is a unique property resulting from the complex interstellar region local to the Radio Arc NTFs.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7816
Author(s):  
Travis Torres ◽  
Nicola Anselmi ◽  
Payam Nayeri ◽  
Paolo Rocca ◽  
Randy Haupt

Sparse arrays have grating lobes in the far field pattern due to the large spacing of elements residing in a rectangular or triangular grid. Random element spacing removes the grating lobes but produces large variations in element density across the aperture. In fact, some areas are so dense that the elements overlap. This paper introduces a low discrepancy sequence (LDS) for generating the element locations in sparse planar arrays without grating lobes. This nonrandom alternative finds an element layout that reduces the grating lobes while keeping the elements far enough apart for practical construction. Our studies consider uniform sparse LDS arrays with 86% less elements than a fully populated array, and numerical results are presented that show these sampling techniques are capable of completely removing the grating lobes of sparse arrays. We present the mathematical formulation for implementing an LDS generated element lattice for sparse planar arrays, and present numerical results on their performance. Multiple array configurations are studied, and we show that these LDS techniques are not impacted by the type/shape of the planar array. Moreover, in comparison between the LDS techniques, we show that the Poisson disk sampling technique outperforms all other approaches and is the recommended LDS technique for sparse arrays.


2021 ◽  
Author(s):  
Guanqiu Ma ◽  
Hu Guanghui

Abstract The factorization method provides a necessary and sufficient condition for characterizing the shape and position of an unknown scatterer by using far-field patterns of infinitely many time-harmonic plane waves at a fixed frequency (which are also called the multistatic data response matrix). This paper is concerned with the factorization method with a single far-field pattern to recover an arbitrary convex polygonal scatterer/source. Its one-wave version relies on the absence of analytical continuation of the scattered/radiated wave-fields in corner domains. It can be regarded as a domain-defined sampling method and does not require forward solvers. In this paper we provide a rigorous mathematical justification of the one-wave factorization method and present some preliminary numerical examples. In particular, the proposed method can be interpreted as a model-driven and data-driven imaging scheme, and it shows how to incorporate a priori knowledge about the unknown target into the test scatterers for the purpose of detecting obstacles/sources with specific features.


Sign in / Sign up

Export Citation Format

Share Document