alfven wave
Recently Published Documents


TOTAL DOCUMENTS

1096
(FIVE YEARS 121)

H-INDEX

57
(FIVE YEARS 6)

Author(s):  
E.-H. Kim ◽  
J. R. Johnson ◽  
K. Nykyri

The Kelvin–Helmholtz (KH) instability of magnetohydrodynamic surface waves at the low latitude boundary layer is examined using both an eigenfrequency analysis and a time-dependent wave simulation. The analysis includes the effects of sheared flow and Alfvén velocity gradient. When the magnetosheath flows are perpendicular to the ambient magnetic field direction, unstable KH waves that propagate obliquely to the sheared flow direction occur at the sheared flow surface when the Alfvén Mach number is higher than an instability threshold. Including a shear transition layer between the magnetosphere and magnetosheath leads to secondary KH waves (driven by the sheared flow) that are coupled to the resonant surface Alfvén wave. There are remarkable differences between the primary and the secondary KH waves, including wave frequency, the growth rate, and the ratio between the transverse and compressional components. The secondary KH wave energy is concentrated near the shear Alfvén wave frequency at the magnetosheath with a lower frequency than the primary KH waves. Although the growth rate of the secondary KH waves is lower than the primary KH waves, the threshold condition is lower, so it is expected that these types of waves will dominate at a lower Mach number. Because the transverse component of the secondary KH waves is stronger than that of the primary KH waves, more efficient wave energy transfer from the boundary layer to the inner magnetosphere is also predicted.


2022 ◽  
Author(s):  
Shigeru Fujita ◽  
Takashi Tanaka

Abstract The geomagnetic variations of the preliminary impulse (PI) of the sudden commencement (SC) are known to show a time delay of the peak displacement and longer duration time in the higher latitudes in the pre-noon and post-noon sectors of the polar region. This peculiar behavior of the PI geomagnetic variation is associated with temporal deformation of the ionospheric PI field-aligned current (FAC) distribution into a crescent shape; its lower-latitude edge extends toward the anti-sunward direction, and its higher-latitude edge almost stays on the same longitude near noon. Numerical simulations revealed that the deformation of the FAC distribution is derived from different behaviors of the two PI current systems. The first current system consists of the FAC connected to the PI FAC in the lower latitude side of the ionosphere, the cross-magnetopause current, and the magnetosheath current (type L current system). The cross-magnetopause current is the inertia current generated in the acceleration front of the solar wind due to the sudden compression of the magnetosheath. Thus, the longitudinal speed of the type L current system in the ionosphere is the solar wind speed in the magnetosheath projected into the ionosphere. In contrast, the PI current system connected to the PI FAC at higher latitude (type H current system) consists of the upward/downward FAC in the pre-noon/post-noon sector, respectively, and dawn-to-dusk field-perpendicular current (FPC) along the dayside magnetopause. The dawn-to-dusk FPC moves to the higher latitudes in the outer magnetosphere over time. The FAC of the type H current system is converted from the FPC due to convergence of the return FPC heading toward the sunward direction in the outer magnetosphere; the return FPC is the inertia current driven by the magnetospheric plasma flow associated with compression of the magnetopause behind the front region of the accelerated solar wind. The acceleration front spreads concentrically from the subsolar point. Consequently, as the return FPC is converted to the FAC of the type H current system, it does not move much in the longitudinal direction over time because the dawn-to-dusk FPC of the type H current system moves to the higher latitudes. Therefore, the high-latitude edge of the PI current distribution in the ionosphere moves only slightly. Finally, we clarified that the FPC-FAC conversion of the type L current system mainly occurs in the region where the Alfvén speed starts to increase toward the Earth. A region with a steep gradient of the Alfvén speed like the plasmapause is not always necessary for conversion from the FPC to the FAC. We also suggest the possible field-aligned structure of the standing Alfvén wave that may occur in the PI phase.


2022 ◽  
Author(s):  
Zeyu Li ◽  
Xi Chen ◽  
Christopher M Muscatello ◽  
Keith H Burrell ◽  
Xueqiao Xu ◽  
...  

Abstract Wide pedestal Quiescent High confinement (QH) mode discovered on DIII-D in recent years is a stationary and quiescent H-mode with the pedestal width exceeding EPED prediction by at least 25%. Its characteristics, such as low rotation, high energy confinement and ELM-free operation, make it an attractive operation mode for future reactors. Linear and nonlinear simulations using BOUT++ reduced two fluid MHD model are carried out to investigate the bursty broadband turbulence often observed in the edge of wide-pedestal QH-mode plasmas. Two kinds of MHD-scale instabilities in different spatial locations within the pedestal were found in the simulations: one mild peeling-ballooning (PB) mode (γ_PB<0.04ω_A) located near the minimum in Er well propagating in ion diamagnetic drift direction; and one drift-Alfvén wave (DAW) locates at smaller radius compared to Er well propagating in the electron diamagnetic drift direction and unstable only when the parallel electron dynamics is included in the simulation. The coupling between drift wave and shear Alfvén wave provides a possible cause of the experimentally observed local profile flattening in the upper-pedestal. The rotation direction, mode location, as well as the wavenumber of these two modes from BOUT++ simulations agree reasonably well with the experimental measurements, while the lack of quantitatively agreement is likely due to the lack of trapped electron physics in current fluid model. This work presents improved physics understanding of the pedestal stability and turbulence dynamics for wide-pedestal QH-mode.


2022 ◽  
Vol 924 (1) ◽  
pp. 33
Author(s):  
Feiyu Li ◽  
Xiangrong Fu ◽  
Seth Dorfman

Abstract The parametric decay of finite-size Alfvén waves in nonperiodic low-beta plasmas is investigated using one-dimensional (1D) hybrid simulations. Compared with the usual small periodic system, a wave packet in a large system under the absorption boundary condition shows different decay dynamics, including reduced energy transfer, localized density cavitation, and ion heating. The resulting Alfvén wave dynamics are influenced by several factors relating to this instability, including the growth rate, central wave frequency, and unstable bandwidth. A final steady state of the wave packet may be achieved when the instability does not have enough time to develop within the residual packet, and the packet size shows well-defined scaling dependencies on the growth rate, wave amplitude, and plasma beta. Under the proper conditions, enhanced secondary decay can also be excited in the form of a narrow, amplified wave packet. These results may help to interpret laboratory and spacecraft observations of Alfvén waves, and to refine our understanding of the associated energy transport and ion heating.


2021 ◽  
Vol 127 (27) ◽  
Author(s):  
F. Stefani ◽  
J. Forbriger ◽  
Th. Gundrum ◽  
T. Herrmannsdörfer ◽  
J. Wosnitza

2021 ◽  
Author(s):  
Nishtha Sachdeva ◽  
Gábor Tóth ◽  
Ward B Manchester ◽  
Bart Van Der Holst ◽  
Zhenguang Huang ◽  
...  

2021 ◽  
Author(s):  
Nishtha Sachdeva ◽  
Gábor Tóth ◽  
Ward B Manchester ◽  
Bart Van Der Holst ◽  
Zhenguang Huang ◽  
...  

2021 ◽  
Vol 923 (2) ◽  
pp. 176
Author(s):  
Nishtha Sachdeva ◽  
Gábor Tóth ◽  
Ward B. Manchester ◽  
Bart van der Holst ◽  
Zhenguang Huang ◽  
...  

Abstract To simulate solar coronal mass ejections (CMEs) and predict their time of arrival and geomagnetic impact, it is important to accurately model the background solar wind conditions in which CMEs propagate. We use the Alfvén Wave Solar atmosphere Model (AWSoM) within the the Space Weather Modeling Framework to simulate solar maximum conditions during two Carrington rotations and produce solar wind background conditions comparable to the observations. We describe the inner boundary conditions for AWSoM using the ADAPT global magnetic maps and validate the simulated results with EUV observations in the low corona and measured plasma parameters at L1 as well as at the position of the Solar Terrestrial Relations Observatory spacecraft. This work complements our prior AWSoM validation study for solar minimum conditions and shows that during periods of higher magnetic activity, AWSoM can reproduce the solar plasma conditions (using properly adjusted photospheric Poynting flux) suitable for providing proper initial conditions for launching CMEs.


2021 ◽  
Vol 87 (6) ◽  
Author(s):  
J.M. TenBarge ◽  
B. Ripperda ◽  
A. Chernoglazov ◽  
A. Bhattacharjee ◽  
J.F. Mahlmann ◽  
...  

Alfvén wave collisions are the primary building blocks of the non-relativistic turbulence that permeates the heliosphere and low- to moderate-energy astrophysical systems. However, many astrophysical systems such as gamma-ray bursts, pulsar and magnetar magnetospheres and active galactic nuclei have relativistic flows or energy densities. To better understand these high-energy systems, we derive reduced relativistic magnetohydrodynamics equations and employ them to examine weak Alfvénic turbulence, dominated by three-wave interactions, in reduced relativistic magnetohydrodynamics, including the force-free, infinitely magnetized limit. We compare both numerical and analytical solutions to demonstrate that many of the findings from non-relativistic weak turbulence are retained in relativistic systems. But, an important distinction in the relativistic limit is the inapplicability of a formally incompressible limit, i.e. there exists finite coupling to the compressible fast mode regardless of the strength of the magnetic field. Since fast modes can propagate across field lines, this mechanism provides a route for energy to escape strongly magnetized systems, e.g. magnetar magnetospheres. However, we find that the fast-Alfvén coupling is diminished in the limit of oblique propagation.


2021 ◽  
Vol 87 (6) ◽  
Author(s):  
Alfred Mallet ◽  
Benjamin D.G. Chandran

We show that large-amplitude, non-planar, Alfvén-wave (AW) packets are exact nonlinear solutions of the relativistic magnetohydrodynamic equations when the total magnetic-field strength in the local fluid rest frame ( $b$ ) is a constant. We derive analytic expressions relating the components of the fluctuating velocity and magnetic field. We also show that these constant- $b$ AWs propagate without distortion at the relativistic Alfvén velocity and never steepen into shocks. These findings and the observed abundance of large-amplitude, constant- $b$ AWs in the solar wind suggest that such waves may be present in relativistic outflows around compact astrophysical objects.


Sign in / Sign up

Export Citation Format

Share Document