potent inhibitory activity
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 57)

H-INDEX

21
(FIVE YEARS 3)

Toxins ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 58
Author(s):  
Jonas Krämer ◽  
Tim Lüddecke ◽  
Michael Marner ◽  
Elena Maiworm ◽  
Johanna Eichberg ◽  
...  

Linear cationic venom peptides are antimicrobial peptides (AMPs) that exert their effects by damaging cell membranes. These peptides can be highly specific, and for some, a significant therapeutic value was proposed, in particular for treatment of bacterial infections. A prolific source of novel AMPs are arthropod venoms, especially those of hitherto neglected groups such as pseudoscorpions. In this study, we describe for the first time pharmacological effects of AMPs discovered in pseudoscorpion venom. We examined the antimicrobial, cytotoxic, and insecticidal activity of full-length Checacin1, a major component of the Chelifer cancroides venom, and three truncated forms of this peptide. The antimicrobial tests revealed a potent inhibitory activity of Checacin1 against several bacteria and fungi, including methicillin resistant Staphylococcus aureus (MRSA) and even Gram-negative pathogens. All peptides reduced survival rates of aphids, with Checacin1 and the C-terminally truncated Checacin11−21 exhibiting effects comparable to Spinosad, a commercially used pesticide. Cytotoxic effects on mammalian cells were observed mainly for the full-length Checacin1. All tested peptides might be potential candidates for developing lead structures for aphid pest treatment. However, as these peptides were not yet tested on other insects, aphid specificity has not been proven. The N- and C-terminal fragments of Checacin1 are less potent against aphids but exhibit no cytotoxicity on mammalian cells at the tested concentration of 100 µM.


2021 ◽  
Vol 14 (12) ◽  
pp. 1323
Author(s):  
Juan Martín-López ◽  
Sandra Codony ◽  
Clara Bartra ◽  
Christophe Morisseau ◽  
María Isabel Loza ◽  
...  

The pharmacological inhibition of soluble epoxide hydrolase (sEH) has been suggested as a potential therapy for the treatment of pain and inflammatory diseases through the stabilization of endogenous epoxyeicosatrienoic acids. Numerous potent sEH inhibitors (sEHI) have been developed, however many contain highly lipophilic substituents limiting their availability. Recently, a new series of benzohomoadamantane-based ureas endowed with potent inhibitory activity for the human and murine sEH was reported. However, their very low microsomal stability prevented further development. Herein, a new series of benzohomoadamantane-based amides were synthetized, fully characterized, and evaluated as sEHI. Most of these amides were endowed with excellent inhibitory potencies. A selected compound displayed anti-inflammatory effects with higher effectiveness than the reference sEHI, TPPU.


Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 705
Author(s):  
Xiaoli Ma ◽  
Qiuyuan Huang ◽  
Shuo Yu ◽  
Shujing Xu ◽  
Yue Huang ◽  
...  

α-Conotoxins GI and MI belong to the 3/5 subfamily of α-conotoxins and potently inhibit muscular nicotinic acetylcholine receptors (nAChRs). To date, no 3/4- or 3/6-subfamily α-conotoxins have been reported to inhibit muscular nAChRs. In the present study, a series of new 3/4-, 3/6-, and 3/7-subfamily GI and MI variants were synthesized and functionally characterized by modifications of loop2. The results show that the 3/4-subfamily GI variant GI[∆8G]-II and the 3/6-subfamily variants GI[+13A], GI[+13R], and GI[+13K] displayed potent inhibition of muscular nAChRs expressed in Xenopus oocytes, with an IC50 of 45.4–73.4 nM, similar to or slightly lower than that of wild-type GI (42.0 nM). The toxicity of these GI variants in mice appeared to be about a half to a quarter of that of wild-type GI. At the same time, the 3/7-subfamily GI variants showed significantly lower in vitro potency and toxicity. On the other hand, similar to the 3/6-subfamily GI variants, the 3/6-subfamily MI variants MI[+14R] and MI[+14K] were also active after the addition of a basic amino acid, Arg or Lys, in loop2, but the activity was not maintained for the 3/4-subfamily MI variant MI [∆9G]. Interestingly, the disulfide bond connectivity “C1–C4, C2–C3” in the 3/4-subfamily variant GI[∆8G]-II was significantly more potent than the “C1–C3, C2–C4” connectivity found in wild-type GI and MI, suggesting that disulfide bond connectivity is easily affected in the rigid 3/4-subfamily α-conotoxins and that the disulfide bonds significantly impact the variants’ function. This work is the first to demonstrate that 3/4- and 3/6-subfamily α-conotoxins potently inhibit muscular nAChRs, expanding our knowledge of α-conotoxins and providing new motifs for their further modifications.


Author(s):  
Deyan Chen ◽  
Ye Liu ◽  
Fang Zhang ◽  
Qiao You ◽  
Wenyuan Ma ◽  
...  

We reported the discovery of 6-TG inhibition of HSV-1 infection and its inhibitory roles in HSK both in vitro and in vivo . 6-TG was shown to possess at least 10× more potent inhibitory activity against HSV-1 than ACV and GCV and, more importantly, inhibit ACV/GCV-resistant mutant viruses. Animal model studies showed that gel-formulated 6-TG topically applied to eyes locally infected with HSV-1 could significantly inhibit HSV-1 replication, alleviate virus-induced HSK pathogenesis, and improve eye conditions.


ACS Omega ◽  
2021 ◽  
Author(s):  
Jaggaiah N. Gorantla ◽  
Santhi Maniganda ◽  
Salila Pengthaisong ◽  
Lukana Ngiwsara ◽  
Phannee Sawangareetrakul ◽  
...  

2021 ◽  
Vol 14 (9) ◽  
pp. 853
Author(s):  
Islam Zaki ◽  
Sara A. Abu El-ata ◽  
Eman Fayad ◽  
Ola A. Abu Ali ◽  
Ali H. Abu Almaaty ◽  
...  

A new series of 2,4-disubstituted benzo[g]quinoxaline molecules have been synthesized, using naphthalene-2,3-diamine and 1,4-dibromonaphthalene-2,3-diamine as the key starting materials. The structures of the new compounds were confirmed by spectral data along with elemental microanalyses. The cytotoxic activity of all synthesized benzo[g]quinoxaline derivatives was assessed in vitro against the breast MCF-7 cancer cell line. The tested molecules revealed good cytotoxicity toward the breast MCF-7 cancer cell line, especially compound 3. The results of topoisomerase IIβ inhibition assay revealed that compound 3 exhibits potent inhibitory activity in submicromolar concentration. Additionally, compound 3 was found to cause pre-G1 apoptosis, and slightly increase the cell population at G1 and S phases of the cell cycle profile in MCF-7 cells. Finally, compound 3 induces apoptosis via Bax activation and downregulation of Bcl2, as revealed by ELISA assay.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanyun Du ◽  
Rui Shi ◽  
Ying Zhang ◽  
Xiaomin Duan ◽  
Li Li ◽  
...  

AbstractThe successive emergences and accelerating spread of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages and evolved resistance to some ongoing clinical therapeutics increase the risks associated with the coronavirus disease 2019 (COVID-19) pandemic. An urgent intervention for broadly effective therapies to limit the morbidity and mortality of COVID-19 and future transmission events from SARS-related coronaviruses (SARSr-CoVs) is needed. Here, we isolate and humanize an angiotensin-converting enzyme-2 (ACE2)-blocking monoclonal antibody (MAb), named h11B11, which exhibits potent inhibitory activity against SARS-CoV and circulating global SARS-CoV-2 lineages. When administered therapeutically or prophylactically in the hACE2 mouse model, h11B11 alleviates and prevents SARS-CoV-2 replication and virus-induced pathological syndromes. No significant changes in blood pressure and hematology chemistry toxicology were observed after injections of multiple high dosages of h11B11 in cynomolgus monkeys. Analysis of the structures of the h11B11/ACE2 and receptor-binding domain (RBD)/ACE2 complexes shows hindrance and epitope competition of the MAb and RBD for the receptor. Together, these results suggest h11B11 as a potential therapeutic countermeasure against SARS-CoV, SARS-CoV-2, and escape variants.


Planta Medica ◽  
2021 ◽  
Author(s):  
Chun Chen ◽  
Ze-Feng Zhu ◽  
Wen-Xing Nie ◽  
Yong Zou

Abstract Flueggea suffruticosa is a traditional Chinese medicine that has been commonly used for the treatment of inflammatory ailments, including rheumatism and lumbago. Suffrutines A and suffrutines B are a pair of novel E,E and Z,E isomeric indolizidine alkaloids isolated from the roots of F. suffruticosa. However, their anti-inflammatory activity has not been reported thus far. The aim of this study was to investigate the inhibitory effect of inflammatory mediators and possible mechanisms of suffrutines A and B in lipopolysaccharide-induced RAW264.7 cells. Results showed that suffrutines A and B could remarkably inhibit the production of nitric oxide, prostaglandin E2, interleukin-6, inducible nitric oxide synthase, and cyclooxygenase-2 in lipopolysaccharide-induced RAW264.7 cells. Further evaluation demonstrated that compared with suffrutines A, suffrutines B could more significantly inhibit the phosphorylation of IKKα/β, the degradation of IκBα, and the nuclear translocation of the p65 and p52 subunits in the canonical and non-canonical nuclear factor-κB pathways. Therefore, suffrutines B exhibited more potent inhibitory activity on inflammatory mediators than suffrutines A.


2021 ◽  
Vol 22 (14) ◽  
pp. 7448
Author(s):  
Chun-Hao Chang ◽  
Semon Wu ◽  
Kai-Cheng Hsu ◽  
Wei-Jan Huang ◽  
Jih-Jung Chen

Five new compounds, eupatodibenzofuran A (1), eupatodibenzofuran B (2), 6-acetyl-8-methoxy-2,2-dimethylchroman-4-one (3), eupatofortunone (4), and eupatodithiecine (5), have been isolated from the aerial part of Eupatorium fortunei, together with 11 known compounds (6‒16). Compounds 1 and 2 featured a new carbon skeleton with an unprecedented 1-(9-(4-methylphenyl)-6-methyldibe nzo[b,d]furan-2-yl)ethenone. Among the isolates, compound 1 exhibited potent inhibitory activity with IC50 values of 5.95 ± 0.89 and 5.55 ± 0.23 μM, respectively, against A549 and MCF-7 cells. The colony-formation assay demonstrated that compound 1 (5 μM) obviously decreased A549 and MCF-7 cell proliferation, and Western blot test confirmed that compound 1 markedly induced apoptosis of A549 and MCF-7 cells through mitochondrial- and caspase-3-dependent pathways.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yanxing Cai ◽  
Wei Xu ◽  
Jiayi Tang ◽  
Najing Cao ◽  
Qiaoshuai Lan ◽  
...  

Abstract Background Our previous studies have shown that combining the antiviral lectin GRFT and the pan-CoV fusion inhibitory peptide EK1 results in highly potent inhibitory activity against SARS-CoV-2 infection. In this study, we aimed to design and construct a bivalent protein consisting of GRFT and EK1 components and evaluate its inhibitory activity and mechanism of action against infection by SARS-CoV-2 and its mutants, as well as other human coronaviruses (HCoVs). Methods The bivalent proteins were expressed in E. coli and purified with Ni-NTA column. HIV backbone-based pseudovirus (PsV) infection and HCoV S-mediated cell–cell fusion assays were performed to test their inhibitory activity. ELISA and Native-PAGE were conducted to illustrate the mechanism of action of these bivalent proteins. Five-day-old newborn mice were intranasally administrated with a selected bivalent protein before or after HCoV-OC43 challenge, and its protective effect was monitored for 14 days. Results Among the three bivalent proteins purified, GL25E exhibited the most potent inhibitory activity against infection of SARS-CoV-2 PsVs expressing wild-type and mutated S protein. GL25E was significantly more effective than GRFT and EK1 alone in inhibiting HCoV S-mediated cell–cell fusion, as well as infection by SARS-CoV-2 and other HCoVs, including SARS-CoV, MERS-CoV, HCoV-229E, HCoV-NL63 and HCoV-OC43. GL25E could inhibit authentic SASR-CoV-2, HCoV-OC43 and HCoV-229E infection in vitro and prevent newborn mice from authentic HCoV-OC43 infection in vivo. GL25E could bind to glycans in the S1 subunit and HR1 in the S2 subunit in S protein, showing a mechanism of action similar to that of GRFT and EK1 alone. Conclusions Since GL25E showed highly potent and broad-spectrum inhibitory activity against infection of SARS-CoV-2 and its mutants, as well as other HCoVs, it is a promising candidate for further development as a broad-spectrum anti-HCoV therapeutic and prophylactic to treat and prevent COVID-19 and other emerging HCoV diseases.


Sign in / Sign up

Export Citation Format

Share Document