optimal energy allocation
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 3)

Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2874
Author(s):  
Philip-Dylan Gleonec ◽  
Jeremy Ardouin ◽  
Matthieu Gautier ◽  
Olivier Berder

Many connected devices are expected to be deployed during the next few years. Energy harvesting appears to be a good solution to power these devices but is not a reliable power source due to the time-varying nature of most energy sources. It is possible to harvest energy from multiple energy sources to tackle this problem, thus increasing the amount and the consistency of harvested energy. Additionally, a power management system can be implemented to compute how much energy can be consumed and to allocate this energy to multiple tasks, thus adapting the device quality of service to its energy capabilities. The goal is to maximize the amount of measured and transmitted data while avoiding power failures as much as possible. For this purpose, an industrial sensor node platform was extended with a multi-source energy-harvesting circuit and programmed with a novel energy-allocation system for multi-task devices. In this paper, a multi-source energy-harvesting LoRaWAN node is proposed and optimal energy allocation is proposed when the node runs different sensing tasks. The presented hardware platform was built with off-the-shelf components, and the proposed power management system was implemented on this platform. An experimental validation on a real LoRaWAN network shows that a gain of 51% transmitted messages and 62% executed sensing tasks can be achieved with the multi-source energy-harvesting and power-management system, compared to a single-source system.


Electronics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1462
Author(s):  
Md Mamun Ur Rashid ◽  
Fabrizio Granelli ◽  
Md. Alamgir Hossain ◽  
Md. Shafiul Alam ◽  
Fahad Saleh Al-Ismail ◽  
...  

Several efforts have been taken to promote clean energy towards a sustainable and green economy. Existing sources of electricity present some complications concerning consumers, utility owners, and the environment. Utility operators encourage household applicants to employ residential energy management (REM) systems. Renewable energy sources (RESs), energy storage systems (ESS), and optimal energy allocation strategies are used to resolve these difficulties. In this paper, the development of a cluster-based energy management scheme for residential consumers of a smart grid community is proposed to reduce energy use and monetary cost. Normally, residential consumers deal with household appliances with various operating time slots depending on consumer preferences. A simulator is designed and developed using C++ software to resolve the residential consumer’s REM problem. The benefits of the RESs, ESS, and optimal energy allocation techniques are analyzed by taking in account three different scenarios. Extensive case studies are carried out to validate the effectiveness of the proposed cluster-based energy management scheme. It is demonstrated that the proposed method can save energy and costs up to 45% and 56% compared to the existing methods.


2019 ◽  
Vol 55 (7) ◽  
pp. 1-6 ◽  
Author(s):  
Xiaodong Sun ◽  
Changchang Hu ◽  
Jianguo Zhu ◽  
Shaohua Wang ◽  
Weiqi Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document