extracellular proteins
Recently Published Documents


TOTAL DOCUMENTS

829
(FIVE YEARS 224)

H-INDEX

76
(FIVE YEARS 10)

2022 ◽  
Vol 12 (1) ◽  
pp. 117
Author(s):  
Agnieszka Surowiecka ◽  
Jerzy Strużyna

The interest in regenerative medicine is increasing, and it is a dynamically developing branch of aesthetic surgery. Biocompatible and autologous-derived products such as platelet-rich plasma or adult mesenchymal stem cells are often used for aesthetic purposes. Their application originates from wound healing and orthopaedics. Adipose-derived stem cells are a powerful agent in skin rejuvenation. They secrete growth factors and anti-inflammatory cytokines, stimulate tissue regeneration by promoting the secretion of extracellular proteins and secrete antioxidants that neutralize free radicals. In an office procedure, without cell incubation and counting, the obtained product is stromal vascular fraction, which consists of not only stem cells but also other numerous active cells such as pericytes, preadipocytes, immune cells, and extra-cellular matrix. Adipose-derived stem cells, when injected into dermis, improved skin density and overall skin appearance, and increased skin hydration and number of capillary vessels. The main limitation of mesenchymal stem cell transfers is the survival of the graft. The final outcomes are dependent on many factors, including the age of the patient, technique of fat tissue harvesting, technique of lipoaspirate preparation, and technique of fat graft injection. It is very difficult to compare available studies because of the differences and multitude of techniques used. Fat harvesting is associated with potentially life-threatening complications, such as massive bleeding, embolism, or clots. However, most of the side effects are mild and transient: primarily hematomas, oedema, and mild pain. Mesenchymal stem cells that do not proliferate when injected into dermis promote neoangiogenesis, that is why respectful caution should be taken in the case of oncologic patients. A longer clinical observation on a higher number of participants should be performed to develop reliable indications and guidelines for transferring ADSCs.


2022 ◽  
Author(s):  
Javier Manzano-Lopez†* ◽  
Sofia Rodriguez-Gallardo† ◽  
Susana Sabido-Bozo† ◽  
Alejandro Cortes-Gomez ◽  
Ana Maria Perez-Linero ◽  
...  

Intracellular trafficking through the secretory organelles depends on transient interactions between cargo proteins and transport machinery. Cytosolic coat protein complexes capture specific luminal cargo proteins for incorporation into transport vesicles by interacting with them indirectly through a transmembrane adaptor or cargo receptor. Due to their transient nature, it is difficult to study these specific ternary protein interactions just using conventional native co-immunoprecipitation. To overcome this technical challenge, we have applied a crosslinking assay to stabilize the transient and/or weak protein interactions. Here, we describe a protocol of protein cross-linking and co-immunoprecipitation, which was employed to prove the indirect interaction in the endoplasmic reticulum of a luminal secretory protein with a selective subunit of the cytosolic COPII coat through a specific transmembrane cargo receptor. This method can be extended to address other transient ternary interactions between cytosolic proteins and luminal or extracellular proteins through a transmembrane receptor within the endomembrane system.


2021 ◽  
Vol 23 (1) ◽  
pp. 146
Author(s):  
Stephan Niland ◽  
Andrea Ximena Riscanevo ◽  
Johannes Andreas Eble

Cancer progression with uncontrolled tumor growth, local invasion, and metastasis depends largely on the proteolytic activity of numerous matrix metalloproteinases (MMPs), which affect tissue integrity, immune cell recruitment, and tissue turnover by degrading extracellular matrix (ECM) components and by releasing matrikines, cell surface-bound cytokines, growth factors, or their receptors. Among the MMPs, MMP-14 is the driving force behind extracellular matrix and tissue destruction during cancer invasion and metastasis. MMP-14 also influences both intercellular as well as cell–matrix communication by regulating the activity of many plasma membrane-anchored and extracellular proteins. Cancer cells and other cells of the tumor stroma, embedded in a common extracellular matrix, interact with their matrix by means of various adhesive structures, of which particularly invadopodia are capable to remodel the matrix through spatially and temporally finely tuned proteolysis. As a deeper understanding of the underlying functional mechanisms is beneficial for the development of new prognostic and predictive markers and for targeted therapies, this review examined the current knowledge of the interplay of the various MMPs in the cancer context on the protein, subcellular, and cellular level with a focus on MMP14.


2021 ◽  
Author(s):  
Jörgen Östling ◽  
Marleen Van Geest ◽  
Henric K Olsson ◽  
Sven-Erik Dahlen ◽  
Emilia Viklund ◽  
...  

Abstract BackgroundThere is a lack of early and precise biomarkers for personalized respiratory medicine. Breath contains an aerosol of droplet particles, which are formed from the epithelial lining fluid when the small airways close and re-open during inhalation succeeding a full expiration. These particles can be collected by impaction using the PExA® method (Particles in Exhaled Air), and are derived from an area of high clinical interest previously difficult to access, making them a potential source of biomarkers reflecting pathological processes in the small airways.Research questionOur aim was to investigate if PExA method is useful for discovery of biomarkers that reflect pathology of small airways.Methods and analysis10 healthy controls and 20 subjects with asthma, of whom 10 with small airway involvement as indicated by a high lung clearance index (LCI ≥2.9 z-score), were examined in a cross-sectional design, using the PExA instrument. The samples were analysed with the SOMAscan proteomics platform (SomaLogic Inc). ResultsTwo hundred-seven proteins were detected in up to 80% of the samples. Nine proteins showed differential abundance in subjects with asthma and high LCI as compared to healthy controls. Two of these were less abundant (ALDOA4, C4), and seven more abundant (FIGF, SERPINA1, CD93, CCL18, F10, IgM, IL1RAP). sRAGE levels were lower in ex-smokers (n=14) than in never smokers (n=16). Gene Ontology (GO) annotation database analyses revealed that the PEx proteome is enriched in extracellular proteins associated with extracellular exosome-vesicles and innate immunity.ConclusionThe applied analytical method was reproducible and allowed identification of pathologically interesting proteins in PEx samples from asthmatic subjects with high LCI. The results suggest that PEx based proteomics is a novel and promising approach to study respiratory diseases with small airway involvement.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jennifer Vandooren ◽  
Yoshifumi Itoh

Alpha-2-macroglobulin is an extracellular macromolecule mainly known for its role as a broad-spectrum protease inhibitor. By presenting itself as an optimal substrate for endopeptidases of all catalytic types, alpha-2-macroglobulin lures active proteases into its molecular cage and subsequently ‘flags’ their complex for elimination. In addition to its role as a regulator of extracellular proteolysis, alpha-2-macroglobulin also has other functions such as switching proteolysis towards small substrates, facilitating cell migration and the binding of cytokines, growth factors and damaged extracellular proteins. These functions appear particularly important in the context of immune-cell function. In this review manuscript, we provide an overview of all functions of alpha-2-macroglobulin and place these in the context of inflammation, immunity and infections.


2021 ◽  
Vol 12 ◽  
Author(s):  
Meng Li ◽  
Hongping Chen ◽  
Pengqi Yin ◽  
Jihe Song ◽  
Fangchao Jiang ◽  
...  

BackgroundMultiple sclerosis (MS) is a demyelinating disease of the central nervous system (CNS) mediated by autoimmunity. No objective clinical indicators are available for the diagnosis and prognosis of MS. Extracellular proteins are most glycosylated and likely to enter into the body fluid to serve as potential biomarkers. Our work will contribute to the in-depth study of the functions of extracellular proteins and the discovery of disease biomarkers.MethodsMS expression profiling data of the human brain was downloaded from the Gene Expression Omnibus (GEO). Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases. GO and KEGG were used to analyze the function and pathway of EP-DEGs. STRING, Cytoscape, MCODE and Cytohubba were used to construct a protein-protein interaction (PPI) network and screen key EP-DEGs. Key EP-DEGs levels were detected in the CSF of MS patients. ROC curve and survival analysis were used to evaluate the diagnostic and prognostic ability of key EP-DEGs.ResultsWe screened 133 EP-DEGs from DEGs. EP-DEGs were enriched in the collagen-containing extracellular matrix, signaling receptor activator activity, immune-related pathways, and PI3K-Akt signaling pathway. The PPI network of EP-DEGs had 85 nodes and 185 edges. We identified 4 key extracellular proteins IL17A, IL2, CD44, IGF1, and 16 extracellular proteins that interacted with IL17A. We clinically verified that IL17A levels decreased, but Del-1 and resolvinD1 levels increased. The diagnostic accuracy of Del-1 (AUC: 0.947) was superior to that of IgG (AUC: 0.740) with a sensitivity of 82.4% and a specificity of 100%. High Del-1 levels were significantly associated with better relapse-free and progression-free survival.ConclusionIL17A, IL2, CD44, and IGF1 may be key extracellular proteins in the pathogenesis of MS. IL17A, Del-1, and resolvinD1 may co-regulate the development of MS and Del-1 is a potential biomarker of MS. We used bioinformatics methods to explore the biomarkers of MS and validated the results in clinical samples. The study provides a theoretical and experimental basis for revealing the pathogenesis of MS and improving the diagnosis and prognosis of MS.


2021 ◽  
Author(s):  
Michał Ciach ◽  
Julia Pawłowska ◽  
Anna Muszewska

AbstractNumerous studies have been devoted to individual cases of horizontally acquired genes in fungi. It has been shown that such genes expand their metabolic capabilities and contribute to their adaptations as parasites or symbionts. Some studies have provided a more extensive characterization of the horizontal gene transfer (HGT) in Dikarya. However, in the early diverging fungi (EDF), the overall influence of HGT on the ecological adaptation and evolution is largely unknown. In order to fill this gap, we have designed a computational pipeline to obtain a sample of over 600 phylogenetic trees with evidence for recent to moderately old HGT across multiple EDF genomes ranging from Chytridiomycota and Blastocladiomycota to Mucoromycota. Our pipeline is designed to obtain a small sample of reliable HGT events with a possibly minimal number of false detections that distort the overall statistical patterns. We show that transfer rates differ greatly between closely related species and strains, but the ancestrally aquatic fungi are generally more likely to acquire foreign genetic material than terrestrial ones. A close ecological relationship with another organism is a predisposing condition, but does not always result in an extensive gene exchange, with some fungal lineages showing a preference for HGT from loosely associated soil bacteria.ImportanceAlthough it is now recognized that horizontal gene exchange is a factor influencing the adaptation and evolution of eukaryotic organisms, the so far described cases in early diverging fungi (EDF) are fragmentary, and a large-scale comprehensive study is lacking. We have designed a methodology to obtain a reliable, statistical sample of inter-kingdom xenologs across the tree of life of EDF to give a preliminary characterization of their general properties and patterns. We study how different fungal lineages vary in terms of the number of xenologs, what are their ecological associations, and the molecular properties of proteins encoded by the acquired genes. Our results help to better understand to what extent and in what way the incorporation of foreign genetic material shaped the present biodiversity of fungi.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhengkai Yi ◽  
Jing Xie

Shewanella putrefaciens is a microorganism with strong spoilage potential for aquatic products. This study aimed to investigate the potential spoilage factors of S. putrefaciens by comparative proteomic analysis. The spoilage potential of two strains of S. putrefaciens (00A and 00B) isolated from chilled spoiled bigeye tuna was investigated. The results of total volatile basic nitrogen (TVB-N), trimethylamine (TMA) in fish inoculated with S. putrefaciens, extracellular protease activity of S. putrefaciens, and degradation of fish proteins indicated that the spoilage potential of S. putrefaciens 00A was much higher than that of 00B. Fish proteins are usually degraded by spoilage microorganism proteases into small molecular peptides and amino acids, which are subsequently degraded into spoilage metabolites in bacterial cells, leading to deterioration of fish quality. Thus, proteomic analysis of the extracellular and intracellular proteins of 00A vs. 00B was performed. The results indicated that the intracellular differentially expressed protein (IDEP) contained 243 upregulated proteins and 308 downregulated proteins, while 78 upregulated proteins and 4 downregulated proteins were found in the extracellular differentially expressed protein (EDEP). GO annotation revealed that IDEP and EDEP were mainly involved in cellular and metabolic processes. KEGG annotation results showed that the upregulated proteins in IDEP were mainly involved in sulfur metabolism, amino acid metabolism, and aminoacyl-tRNA biosynthesis, while downregulated proteins were related to propanoate metabolism. In contrast, EDEP of KEGG annotation was mainly involved in ribosomes, quorum sensing, and carbohydrate metabolism. Proteins associated with spoilage containing sulfur metabolism (sulfite reductase, sulfate adenylyltransferase, adenylyl-sulfate kinase), amino acid metabolism (biosynthetic arginine decarboxylase, histidine ammonia-lyase), trimethylamine metabolism (trimethylamine-N-oxide reductase), and extracellular proteins (ATP-dependent Clp protease proteolytic subunit) were identified as upregulated. These proteins may play a key role in the spoilage potential of S. putrefaciens. These findings would contribute to the identification of key spoilage factors and understanding of the spoilage mechanism of microorganisms.


Sign in / Sign up

Export Citation Format

Share Document