energy sink
Recently Published Documents


TOTAL DOCUMENTS

381
(FIVE YEARS 165)

H-INDEX

34
(FIVE YEARS 8)

Author(s):  
Mohammed D. Aljubaily ◽  
Imad Alshawi

The existence of a mobile sink for gathering data significantly extends wireless sensor networks (WSNs) lifetime. In recent years, a variety of efficient rendezvous points-based sink mobility approaches has been proposed for avoiding the energy sink-holes problem nearby the sink, diminishing buffer overflow of sensors, and reducing the data latency. Nevertheless, lots of research has been carried out to sort out the energy holes problem using controllable-based sink mobility methods. However, further developments can be demonstrated and achieved on such type of mobility management system. In this paper, a well-rounded strategy involving an energy-efficient routing protocol along with a controllable-based sink mobility method is proposed to extirpate the energy sink-holes problem. This paper fused the fuzzy A-star as a routing protocol for mitigating the energy consumption during data forwarding along with a novel sink mobility method which adopted a grid partitioning system and fuzzy system that takes account of the average residual energy, sensors density, average traffic load, and sources angles to detect the optimal next location of the mobile sink. By utilizing diverse performance metrics, the empirical analysis of our proposed work showed an outstanding result as compared with fuzzy A-star protocol in the case of a static sink.


2022 ◽  
Vol 169 ◽  
pp. 108706
Author(s):  
Kevin Dekemele ◽  
Giuseppe Habib ◽  
Mia Loccufier

Author(s):  
Mohammad Al-Shudeifat ◽  
Adnan Saeed

Abstract The frequency-energy plots (FEPs) of two-degree-of-freedom linear structures attached to a piecewise nonlinear energy sink (PNES) are generated here and thoroughly investigated. This study provides the FEP analysis of such systems for further understanding to nonlinear targeted energy transfer (TET) by the PNES. The attached PNES to the considered linear dynamical systems incorporates a symmetrical clearance zone of zero stiffness content where the boundaries of the zone are coupled with the linear structure by linear stiffness elements. In addition, linear viscous damping is selected to be continuous during the PNES mass oscillation. The underlying nonlinear dynamical behaviour of the considered structure-PNES systems is investigated by generating the fundamental backbone curves of the FEP and the bifurcated subharmonic resonance branches using numerical continuation methods. Accordingly, interesting dynamical behaviour of the nonlinear normal modes (NNMs) of the structure-PNES system on different backbones and subharmonic resonance branches has been observed. In addition, the imposed wavelet transform frequency spectrums on the FEPs have revealed that the TET takes place in multiple resonance captures where it is dominated by the nonlinear action of the PNES.


2022 ◽  
Vol 81 ◽  
pp. 103116
Author(s):  
Mohammadali Nasrabadi ◽  
Andrei Vladimirovich Sevbitov ◽  
Vahid Arab Maleki ◽  
Narges Akbar ◽  
Ilghar Javanshir

Sign in / Sign up

Export Citation Format

Share Document