Forest Products Journal
Latest Publications


TOTAL DOCUMENTS

741
(FIVE YEARS 154)

H-INDEX

13
(FIVE YEARS 1)

Published By Forest Products Society

0015-7473

2022 ◽  
Vol 72 (1) ◽  
pp. 21-28
Author(s):  
Karlo Beljan ◽  
Denis Dolinar ◽  
Donald Hodges

Abstract This paper focuses on designing a methodological workflow to fill a knowledge gap for determining the cost of capital for commercial forestry projects. Upon reviewing the literature, a method to determine the cost of capital for profit-oriented forestry seems to be lacking. Accordingly, we selected and analyzed 42 companies that do businesses worldwide, are present on the stock exchange, and possess or lease forest land. Based on their business activities (growing forest, sawmilling, final production, paper production), these companies are classified into four subgroups. An algorithm has been devised using the concept of risk diversification and the capital asset pricing model for three groups of investors and four forestry subgroups. In doing so, the real risk-free rate (0.43%) is set as the difference between an average return on 10-year US government bonds (2.59% nominal) and the 10-year average US inflation rate (2.16%). The measure of forestry systematic risk (beta coefficient) varies between 0.83 and 1.41, while the equity (stock exchange market) risk premium is set to 6%. Unsystematic risk is determined using a process of mapping which takes into account all risk elements marked as relevant for the forestry sector. This approach provides results that reveal the cost of capital varying between 5.41% and 16.55% based on the current level of an investor's portfolio diversification and the risk characteristics of the forestry subgroup. Finally, the forestry companies meeting the investor's expectations are noted as preferable investment opportunities.


2021 ◽  
Vol 72 (1) ◽  
pp. 11-20
Author(s):  
Mingtao He ◽  
Wenying Li ◽  
Brian K. Via ◽  
Yaoqi Zhang

Abstract Firms engaged in producing, processing, marketing, or using lumber and lumber products always invest in futures markets to reduce the risk of lumber price volatility. The accurate prediction of real-time prices can help companies and investors hedge risks and make correct market decisions. This paper explores whether Internet browsing habits can accurately nowcast the lumber futures price. The predictors are Google Trends index data related to lumber prices. This study offers a fresh perspective on nowcasting the lumber price accurately. The novel outlook of employing both machine learning and deep learning methods shows that despite the high predictive power of both the methods, on average, deep learning models can better capture trends and provide more accurate predictions than machine learning models. The artificial neural network model is the most competitive, followed by the recurrent neural network model.


2021 ◽  
Vol 72 (1) ◽  
pp. 1-10
Author(s):  
Rafael da Rosa Azambuja ◽  
David B. DeVallance ◽  
Joseph McNeel

Abstract Utilization of low-grade yellow-poplar (Liriodendron tulipifera) lumber would provide for alternative structural lumber sources and promote the growth of cross-laminated timber (CLT) manufacturing facilities within the Appalachian Region. A significant amount of low-grade yellow-poplar lumber (i.e., National Hardwood Lumber Association [NHLA] No. 2A and Below Grade) is utilized for wood pallets. In practice, this material is not graded for structural purposes. Additionally, research on yellow-poplar for structural use has focused on grading lumber from a small population of selected logs, not by regrading NHLA lumber from manufacturing facilities. Therefore, the research's objective was to investigate the structural grades of a typical population of NHLA graded No. 2 and lower lumber and evaluate their potential to meet structural grades necessary for CLT panels. NHLA graded lumber was regraded and assigned to visual structural grades following Northeastern Lumber Manufacturers Association rules and evaluated for flatwise bending modulus of elasticity (MOEb) by nondestructive proof loading. The results of the study indicated that 54.6 percent of the boards possessed a minimal structural visual grade required for CLT panels according to American National Standards Institutes/The Engineered Wood Association (ANSI/APA) PRG 320-2019 (2020). Splits were the most common limiting defect that downgraded boards to nonstructural grades. Also, 96.6 percent of the boards evaluated had a MOEb above the required minimal board value of 1.2 ×106 psi (8,274 MPa) listed in ANSI/APA PRG 320-2019 (2020). The results of the study indicated that a majority of NHLA low-grade yellow-poplar, when regraded for structural purposes, meets or exceeds minimum lumber grade values necessary for use in CLT panel production.


2021 ◽  
Vol 71 (4) ◽  
pp. 379-390
Author(s):  
Shashika Himandi ◽  
Priyan Perera ◽  
Hiran Amarasekera ◽  
Rajitha Rupasinghe ◽  
Richard P. Vlosky

Abstract The Moratuwa Woodworking Industry Cluster (MWIC) is a geographically concentrated cluster of over 1,600 small-to-medium scale wood-based manufacturing and retail facilities in Sri Lanka. Firms include furniture manufacturers, carpentry shops, sawmills, and integrated sawmills. The concept of industrial symbiosis explores the synergies between industrial facilities to exchange energy, water, by-products, and waste to achieve a higher efficiency in resource utilization. This research was undertaken to address the lack of quantitative information on wood residues generated within the MWIC. A survey of 180 primary and secondary wood product manufacturers was undertaken to quantify MWIC firm by-product production and consumption of wood residues to establish a baseline for possible end use and waste synergies. The total population of enterprises generating wood waste is 730; retail facilities are not included. Sawmills produce approximately 66% of the 6,490 MT of MWIC's monthly wood residue generation, with the balance produced by carpentry and integrated enterprises. Teak (Tectona grandis) and mahogany (Swietenia macrophylla) are the dominant species used in the MWIC, accounting for most of the wood waste. Three main types of wood waste were identified in the survey: sawdust (76.5%), boards with significant wane (16.5%) unusable for further products, and offcuts (6.9%). Only 55% of the wood waste generated in MWIC is currently used; the remaining 45% is taken to landfills or disposed of in other ways, such as discarded in waterways or other nonapproved locations. Improved wood waste sorting by type at the mill level and aggregated wood waste within the MWIC was determined to increase the usability of wood waste as potential inputs in other wood manufacturing sectors in the MWIC.


2021 ◽  
Vol 71 (4) ◽  
pp. 309-321
Author(s):  
Lijun Jin ◽  
Meng Lin ◽  
Guoshuang Tian

Abstract The existing forest resource accounting system is limited to the valuation of wood and forest products; the service value of the forest resource ecosystem is not yet included. This study adopts an empirical approach to studying the rationality and influencing factors of compiling a forest resource balance sheet (FRBS). An FRBS can systematically reflect the contribution of forest resources to the economy, ecology, and society in terms of both physical quantity and value quantity. A questionnaire survey was used to collect the data. We found that the determination and measurement of forest resource assets and liabilities and the calculation of the service value of the ecosystem had a supporting effect on the rationality of compiling an FRBS. This study expands the field and scope of forest resource accounting, facilitates the compilation of natural resources and government balance sheets, and presents the practical significance for the theory and practice behind the development of an FRBS.


2021 ◽  
Vol 71 (4) ◽  
pp. 371-378
Author(s):  
Azadwinder Singh Chahal ◽  
Jaya Tripathi ◽  
Daniel Ciolkosz ◽  
Sarah Wurzbacher ◽  
Michael Jacobson

Abstract Sufficiently valuing small-diameter-stem (diameter < 9 in.) woody material in Pennsylvania forest product markets may incentivize increased utilization of that material, a resource opportunity that would provide economic and ecological benefits to the state's forests and forest products community. Debarking is one primary process that could enhance the value of these small-diameter-stem materials for secondary markets. The wood products community in Pennsylvania was surveyed as to their perceptions of the status and value of economical small-diameter-stem debarking. The largest perceived current market for debarked, small-diameter-stem material identified by respondents is for chips for pulp and paper, and anticipated future demand is expected to be highest for chips for pulp and paper, chips for energy, and small-dimension lumber. Respondents who currently supply a given market tend to be more optimistic about that market than respondents who do not serve that particular market. Shredded wood/hog fuel and mulch are the two markets with the lowest overall scores for anticipated benefit of additional processing by debarking. Seventy-six percent of all respondents indicated that economical small-diameter-stem debarking would benefit their operation.


2021 ◽  
Vol 71 (4) ◽  
pp. 322-329
Author(s):  
Anming Zhu ◽  
Shiming Ren ◽  
Xueqi Li ◽  
Xiaoqi Zhao ◽  
Lei Wang ◽  
...  

Abstract Chinese medicine herbal extracts are ideal candidates to replace toxic industrial wood preservatives thanks to their antifungal and nontoxic properties. To investigate the antifungal activity of Chinese herbal medicines, in this study, Trametes versicolor fungi were selected as test strains to evaluate the antifungal properties of Fructus Cnidii, Fructus Forsythiae, and Radix Stemonae. The results show that Fructus Cnidii has a strong inhibitory effect against T. versicolor, whereas Fructus Forsythiae and Radix Stemonae have a weak inhibitory effect. The hyphae growth cycle shows that the three studied Chinese herbs disrupt the growth of T. versicolor. Moreover, instead of direct killing, the Chinese herbal medicine demonstrated inhibition ability. Furthermore, the morphological and toxicological evidence shows that Fructus Cnidii affected the expression of proteins or enzymes to achieve the inhibition goal. In sum, this study could provide both primary data and a theoretical foundation for further developing and applying for traditional Chinese medicine as a green type of wood preservative.


2021 ◽  
Vol 71 (4) ◽  
pp. 401-406
Author(s):  
Laya Khademibami ◽  
Alan Sherrington ◽  
Rubin Shmulsky ◽  
Franklin Quin

Abstract In this research, flexural properties of mill-run, in-grade red and white oak lumber from a single mill and commercially available laminated hardwood composite were evaluated. Structurally graded green (wet) freshly sawn red and white oak 5 by 10-cm (2 by 4-in) nominal lumber as well as glue-laminated hardwood composite billets were tested in bending and their modulus of rupture (MOR) and modulus of elasticity (MOE) properties were developed. It is well documented that MOR and MOE are two major indicators to evaluate flexural strength of wood lumbers. From these data, summary statistics, design values, and mean separations were calculated and reported. Overall, the red and white oak lumber performed similarly to structural No. 2 grade material. The hardwood composite billets were highly uniform. Each of the three materials demonstrated a reasonably good relationship between MOE and MOR, thereby suggesting that MOE could be used as a selection criterion for strength in a commercial use situation.


2021 ◽  
Vol 71 (4) ◽  
pp. 336-341
Author(s):  
Fang-Da Zhang ◽  
Ji-Lei Wang ◽  
Li-jin Guo ◽  
An-Min Huang ◽  
Wenna Wang

Abstract Dalbergia cochinchinensis can be distinguished from Dalbergia retusa, Dalbergia bariensis, and Dalbergia oliveri quickly using infrared spectrum characteristic peaks as shown in a previous study. To investigate the components corresponding to the infrared characteristic peaks of Dalbergia cochinchinensis, petroleum ether, ethyl acetate, and butyl alcohol were sequentially used to extract the dispersion liquid of D. cochinchinensis. The petroleum ether extracts were further fractionated by column chromatography, using Fourier-transform infrared spectroscopy (FTIR) to track the characteristic components during separation. FTIR spectra of petroleum ether extractives indicated the presence of aromatic ketones and olefin compounds. The gas chromatography–mass spectrometry research showed some main components and gave possible structure. Furthermore, their detailed structures were characterized thorough a nuclear magnetic resonance approach, and then two possible components (3,5-dihydroxy-7-methoxy-2-phenylchroman-4-one and 3,5,7-trihydroxy-2-phenylchroman-4-one) were identified.


2021 ◽  
Vol 71 (4) ◽  
pp. 391-400
Author(s):  
Kayode Olaoye ◽  
Lawrence Aguda ◽  
Bolade Ogunleye

Abstract Acoustic test methods such as longitudinal vibration have been developed to predict the elastic properties of wood. However, attention has not been shifted to using this method to predict other mechanical properties, especially on Nigeria's preferred, and lesser-used wood species. Thus, we further investigate relationships among mechanical and acoustic properties of selected hardwood species with a view of predicting the mechanical properties of wood from acoustic parameters. Clear wood samples (324) of 20 by 20 by 20 mm3 were collected axially from Albizia adianthifolia, Gmelina arborea, Delonix regia, and Boscia anguistifolia trees, and conditioned before testing. The longitudinal vibration method was adopted to test for the dynamic (acoustic) parameters and properties (fundamental frequency, damping factor, dynamic modulus of elasticity, sound velocity, specific elastic modulus, radiation coefficient, acoustic conversion efficiency, acoustic impedance) while the universal testing machine was used to test for the mechanical properties (static modulus of elasticity, modulus of rupture, maximum compression strength parallel to grain). The damping factor, dynamic modulus of elasticity, and acoustic impedance were the best acoustic parameters that significantly correlated with the static modulus of elasticity (−0.57, 0.81, 0.76), modulus of rupture −0.64, 0.82, 0.85) and maximum compression strength parallel to grain (−0.52, 0.78, 0.84), respectively. There was a significant difference in the mechanical properties with respect to species, thus A. adianthifolia and G. arborea were mechanically better than D. regia and B. anguistifolia for construction or structural purposes. This study revealed that additional new acoustic measures are suitable for inferring mechanical wood properties.


Sign in / Sign up

Export Citation Format

Share Document