Future Journal of Pharmaceutical Sciences
Latest Publications


TOTAL DOCUMENTS

388
(FIVE YEARS 388)

H-INDEX

3
(FIVE YEARS 3)

Published By Springer Science And Business Media LLC

2314-7253

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Naresh Kumar ◽  
Monu Yadav ◽  
Anil Kumar ◽  
Monika Kadian ◽  
Sunil Kumar

Abstract Background Psychosis is a complex mental illness divided by positive symptoms, negative symptoms, and cognitive decline. Clinically available medicines are associated with some serious side effects which limit their use. Treatment with flavonoids has been associated with delayed onset and development, decreased risk, or increased improvement of various neuropsychiatric disorders including psychosis with negligible side effects. Therefore, the present study was aimed to investigate the protective effects of hesperidin (flavonoid) alone or its combination with coenzyme Q10 against ketamine-induced psychotic symptoms in mice. Results Ketamine (50 mg/kg, i.p.) was given for 21 days to induce psychosis in Laca mice of either sex. Locomotor activity and stereotypic behaviors, immobility duration (forced swim test), and increased transfer latency (elevated plus maze) were performed to test the effect of hesperidin (50 mg/kg, 100 mg/kg, 200 mg/kg, p.o.) and coenzyme Q10 (20 mg/kg, 40 mg/kg, p.o.) and combination of hesperidin + coenzyme Q10 followed by biochemical and mitochondrial complexes assays. For 21 days, ketamine (50 mg/kg, i.p.) administration significantly produced increased locomotor activity and stereotypic behaviors (positive symptoms), increased immobility duration (negative symptoms) and cognitive deficits (increases transfer latency) weakens oxidative defense and mitochondrial function. Further, 21 days’ administration of hesperidin and coenzyme Q10 significantly reversed the ketamine-induced psychotic behavioral changes and biochemical alterations and mitochondrial dysfunction in the discrete areas (prefrontal cortex and hippocampus) of mice brains. The potential effect of these drugs was comparable to olanzapine treatment. Moreover, the combination of hesperidin with coenzyme Q10 and or a combination of hesperidin + coenzyme Q10 + olanzapine treatment did not produce a significant effect compared to their per se effect in ketamine-treated animals. Conclusions The study revealed that hesperidin alone or in combination with coenzyme Q10 could reduce psychotic symptoms and improve mitochondrial functions and antioxidant systems in mice, suggesting neuroprotective effects against psychosis.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Mandeep K. Arora ◽  
Sudhanshu Pandey ◽  
Ritu Tomar ◽  
Jagannath Sahoo ◽  
Dinesh Kumar ◽  
...  

Abstract Background High-fat diet (HFD) possesses a major cause of cardiovascular disease, and hepatosteatosis. Unfortunately, long-term use of statins has a theoretical possibility of worsening of hepatic histology in the patients with non-alcoholic fatty liver disease (NAFLD). The objective of the study was to explore hepatoprotective potential of policosanol as an alternative to statins in experimental NAFLD. For the same, young male Wistar rats were fed with HFD for 8 weeks to induce NAFLD. 48 adult Wistar rats were distributed into six investigational groups: normal control, HFD control, and four treatment groups, receiving policosanol (50 and 100 mg/kg/day), atorvastatin (30 mg/kg/day), and silymarin (100 mg/kg/day) for 8 weeks along with HFD. Result HFD consumption caused profound hepatotoxicity evident by hepatic oxidative stress, increased Serum glutamic oxaloacetic transaminase (SGOT), Serum glutamic pyruvic transaminase (SGPT), Alkaline phosphatase (ALP), and bilirubin content. Treatment with policosanol (100 mg/kg) markedly reduced the elevated SGOT, SGPT, and ALP levels in HFD-fed rats. Moreover, policosanol significantly reduced hepatic oxidative stress manifest by reduced malondialdehyde (MDA) and increased glutathione (GSH) level. The treatment with policosanol (100 mg/kg) was found to be more active in attenuating the HFD-induced hepatotoxicity as compared to policosanol (50 mg/kg) and atorvastatin (30 mg/kg). Moreover, we observed that the hepatoprotective potential of policosanol was comparable to the silymarin. Conclusions The results of the study clearly indicated that the policosanol could be considered an intriguing approach for the treatment of NAFLD.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Zaed M. Mazayen ◽  
Amira M. Ghoneim ◽  
Rasha S. Elbatanony ◽  
Emad B. Basalious ◽  
Ehab R. Bendas

Abstract Background Nanotechnology is considered a new and rapidly emerging area in the pharmaceutical and medicinal field. Nanoparticles, as drug delivery systems, impart several advantages concerning improved efficacy as well as reduced adverse drug reactions. Main body Different types of nanosystems have been fabricated including carbon nanotubes, paramagnetic nanoparticles, dendrimers, nanoemulsions, etc. Physicochemical properties of the starting materials and the selected method of preparation play a significant aspect in determining the shape and characteristics of the developed nanoparticles. Dispersion of preformed polymers, coacervation, polymerization, nano-spray drying and supercritical fluid technology are among the most extensively used techniques for the preparation of nanocarriers. Particle size, surface charge, surface hydrophobicity and drug release are the main factors affecting nanoparticles physical stability and biological performance of the incorporated drug. In clinical practice, many nanodrugs have been used for both diagnostic and therapeutic applications and are being investigated for various indications in clinical trials. Nanoparticles are used for the cure of kidney diseases, tuberculosis, skin conditions, Alzheimer’s disease, different types of cancer as well as preparation of COVID-19 vaccines. Conclusion In this review, we will confer the advantages, types, methods of preparation, characterization methods and some of the applications of nano-systems.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Flavius Phrangsngi Nonglang ◽  
Abhijeet Khale ◽  
Surya Bhan

Abstract Background The rhizome of Kaempferia galanga (K. galanga) was collected from Meghalaya, India, and its ethanolic extract was obtained by freeze-drying or lyophilization process, which was then assessed for its in vitro anti-oxidant activity and phytochemical characterization using high-performance thin-layer chromatography (HPTLC) and gas chromatography-mass spectroscopy (GCMS). Results In vitro anti-oxidant activity analysis shows an inhibitory concentration (IC50) value of 1.824 mg/mL and 0.307 mg/mL for, α, α-diphenyl-ρ-picrylhydrazyl (DPPH) and 2, 2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays, respectively. Total polyphenol content (TPC) of 23.55 ± 0.5 mg gallic acid equivalent (GAE)/g dry weight of extract and total flavonoid content (TFC) of 100 ± 1.414 mg rutin equivalents (RE)/g dry weight of extract were found. High-performance thin-layer chromatography (HPTLC) analysis shows the best separation of bands at different retention factor (Rf) values, when employing the solvent system 2-butanol/1-propanol/water in the ratio of 3:1:1 (v/v/v). Gas chromatography-mass spectroscopy (GCMS) analysis confirms the presence and identification of various phytocompounds, with ethyl p-methoxycinnamate identified as the major active compound. Conclusion Freeze-dried ethanolic extract of K. galanga (rhizome) possesses anti-oxidant activity. Ethyl p-methoxycinnamate is present as the major bioactive component (about 94.87% of the total area composition), and since it has very important and diverse medicinal properties, a freeze-drying process (lyophilization) can be utilized for its isolation and extraction.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Biradar Shivaleela ◽  
S. C. Srushti ◽  
S. J. Shreedevi ◽  
R. L. Babu

Abstract Background Inflammatory diseases are the vast array of disorders caused by inflammation. During most inflammatory events, many cytokines expressions were modulated, and one such cytokine is tumor necrosis factor-alpha (TNF-α). TNF-α is mainly secreted by monocytes and macrophages. Notably, it has been proposed as a therapeutic target for several diseases. The anti-TNF biology approach is mainly based on monoclonal antibodies. The fusion protein and biosimilars are prevalent in treating inflammation for decades. Only a few small molecule inhibitors are available to inhibit the expression of TNF-α, and one such promising drug was thalidomide. Therefore, the study was carried out to design thalidomide-based small molecule inhibitors for TNF-α. The main objective of our study is to design thalidomide analogs to inhibit TNF-α using the insilico approach. Results Several thalidomide analogs were designed using chemsketch. After filtration of compounds through ‘Lipinski rule of 5’ by Molinspiration tool, as a result, five compounds were selected. All these compounds were subjected to molecular docking, and the study showed that all five compounds had good binding energy. However, based on ADMET predictions, two compounds (S3 and S5) were eliminated. Conclusions Our preliminary results suggest that S1, S2, S4 compounds showed potential ligand binding capacity with TNF-α and, interestingly, with limited or no toxicity. Our preliminary investigation and obtained results have fashioned more interest for further in vitro studies.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Khandokar Farjana Urmi ◽  
Md. Saddam Nawaz ◽  
S. M. Ashraful Islam

Abstract Background The present work describes the development and validation of a new, specific, accurate, and precise stability-indicating RP-HPLC method for the simultaneous estimation of Esomeprazole (ESP) and Naproxen (NAP) in modified-release bi-layer tablet dosage form. Analytical Quality by Design concept was implemented through the method development exercise to establish the robustness of the method. Results Method development was performed on C18, 250 × 4.6 mm ID, and 5 µm particle size column with 10 µl injection volume using a photodiode array (PDA) detector to monitor the detection at 280 nm. The mobile phase consisted of the buffer: methanol at a ratio of 50: 50 (v/v), and the flow rate was maintained at 1.5 ml/min, and the column oven temperature was maintained at 30 °C. The retention times for NAP and ESP were found 5.9 ± 0.1 and 8.9 ± 0.1 min, respectively. The method was validated in terms of system suitability, specificity, accuracy, linearity, precision, and solution stability. Linearity was observed over the range of concentration 8–12 µg/ml for ESP and 200–300 µg/ml for NAP, and the correlation coefficient (R2) was found excellent > 0.999. The method was specific to ESP and NAP, and the peak purity was found 99.97% for ESP and 100.00% for NAP. The method was precise and had %RSD less than 2. Recovery study for accuracy with placebo was found in the range of 99.63–100.36% for ESP and 99.91–100.43% for NAP. Conclusion This proposed fast, reliable, cost-effective method can be used as a quality control tool for the simultaneous determination of Esomeprazole and Naproxen in routine laboratory analysis. Graphical Abstract


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Shailesh Mistry ◽  
Akhilesh Kumar Singh

Abstract Background For many years, various drugs have been used for the treatment of infectious diseases but some bacterial microorganisms have induced resistance to several drugs. In a search of new antimicrobial agents, a series of new steroidal hydrazones were designed and synthesized. Result The structures of the compounds were established based on the spectral data. The in vitro antimicrobial activity of some newly synthesized compounds against bacteria and fungi was studied. Conclusion New compounds showed better or similar antimicrobial activity. Designing more efficient steroidal hydrazones from ketosteroid based on the current study may successfully lead to the development of antimicrobial agent. Graphical abstract


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Martins Obinna Ogugofor ◽  
Ugochi Olivia Njoku ◽  
Obioma Uzoma Njoku ◽  
Gaber El-Saber Batiha

Abstract Background The most commonly occurring mechanism driving ischemic heart disease, ischemic stroke, and myocardial infarction is thrombosis. It is normally characterized by platelet activation and aggregation. Thrombolytics have been used in the treatment of several forms of thrombosis, but their adverse effects have limited their usefulness. Thus, there is a need to develop alternatives from medicinal plants known to possess antithrombotic activity such as Costus afer. Results The phytochemical evaluations indicated the presence of flavonoids, alkaloids, cardiac glycosides, tannins, terpenoids, and saponins. The antithrombotic profiling showed that streptokinase had the highest percentage clot lysis, followed by ethylacetate fraction of the extract, which was higher than aspirin and other fractions of the extract. Conclusion The present findings show that C. afer stem extract and various fractions possess antithrombotic activities. However, further studies are needed to characterize the antithrombotic bioactive compounds present in the different fractions that are responsible for the activities.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Tamanna Sultana ◽  
Arup Kumar Mitra ◽  
Satadal Das

Abstract Background The incidence of cervical cancer is increasing at an alarming rate in many countries and presently, it is the most common form of malignant cancer being reported among women in India. Development of novel approach for cervical cancer therapy, sparing healthy normal cells overcoming the limitations of prevailing therapies is of prime importance. Mangroves constitute a significant repository of medicinally important plants. Thus, in this study, we aimed to determine the anticancer activity of the mangrove Excoecaria agallocha L. leaf extracts on human cervical cancer (SiHa HPV 16+) cell line with subsequent characterization of the bioactive compounds conferring the anticancer activity and studying the probable underlying mechanism of action of the purified plant extract. Results The plant extract was subjected to silica gel column chromatography and the fractions obtained were analyzed for cytotoxic activity against SiHa cells by MTT assay. One out of the three eluted fractions exhibited selective toxicity against SiHa cells with an IC50 value of 15.538 ± 0.577 µg/mL, while it had no cytotoxic effect on normal healthy human peripheral blood mononuclear cells. High-resolution liquid chromatography mass spectroscopy, coupled to electron spray ionization and diode array detection analysis, led to the structure elucidation and identification of a few pharmacologically important compounds, with Bergenin being present in the highest abundance. Fluorescence microscopy results revealed that the plant extract fraction induced LC3 puncta formation, in EGFP- SiHa cells indicating the onset of autophagy, with simultaneous stimulation of mitophagy. The plant extract also inhibited proliferation of the SiHa-smac-mCherry cells by second mitochondria-derived activator of caspase (SMAC)—induced cytochrome c dependent apoptosis, that was further confirmed with Caspase-3 activation by colorimetric assay. The GFP-dgn in SiHa cells was remarkably protected from proteasomal degradation that might upregulate the survivability of the cells significantly. Flow cytometry followed by Western blot analysis further asserted the ability of the plant extract fraction to cause cell cycle arrest of SiHa cells in the G2/M phase by significantly reducing protein expression levels of cyclin B1 and D1, decreasing Cdc2 level and simultaneously increasing p21 and p53 levels. Conclusion It could be inferred that the aqueous extract of E. agallocha successfully decreased the proliferation of SiHa cervical cancer cells through induction of autophagy and apoptosis in a concerted manner, with simultaneous stimulation of mitophagy and G2/M phase cell cycle arrest, hinting at Bergenin being the major compound conferring the anti-cancer activity of the plant extract. Thus, isolation of the identified bioactive compounds from E. agallocha and their subsequent purification for drug development might serve as a novel medicinal approach for the treatment of cervical cancer in conjugation with existing therapeutic methods.


Sign in / Sign up

Export Citation Format

Share Document