International Journal of Applied Metaheuristic Computing
Latest Publications


TOTAL DOCUMENTS

306
(FIVE YEARS 146)

H-INDEX

12
(FIVE YEARS 3)

Published By Igi Global

1947-8291, 1947-8283

2022 ◽  
Vol 13 (2) ◽  
pp. 0-0

The Maximum Clique Problem (MCP) is a classical NP-hard problem that has gained considerable attention due to its numerous real-world applications and theoretical complexity. It is inherently computationally complex, and so exact methods may require prohibitive computing time. Nature-inspired meta-heuristics have proven their utility in solving many NP-hard problems. In this research, we propose a simulated annealing-based algorithm that we call Clique Finder algorithm to solve the MCP. Our algorithm uses a logarithmic cooling schedule and two moves that are selected in an adaptive manner. The objective (error) function is the total number of missing links in the clique, which is to be minimized. The proposed algorithm was evaluated using benchmark graphs from the open-source library DIMACS, and results show that the proposed algorithm had a high success rate.


2022 ◽  
Vol 13 (2) ◽  
pp. 1-22
Author(s):  
Sarab Almuhaideb ◽  
Najwa Altwaijry ◽  
Shahad AlMansour ◽  
Ashwaq AlMklafi ◽  
AlBandery Khalid AlMojel ◽  
...  

The Maximum Clique Problem (MCP) is a classical NP-hard problem that has gained considerable attention due to its numerous real-world applications and theoretical complexity. It is inherently computationally complex, and so exact methods may require prohibitive computing time. Nature-inspired meta-heuristics have proven their utility in solving many NP-hard problems. In this research, we propose a simulated annealing-based algorithm that we call Clique Finder algorithm to solve the MCP. Our algorithm uses a logarithmic cooling schedule and two moves that are selected in an adaptive manner. The objective (error) function is the total number of missing links in the clique, which is to be minimized. The proposed algorithm was evaluated using benchmark graphs from the open-source library DIMACS, and results show that the proposed algorithm had a high success rate.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

This paper intends to consider a multi-objective problem for expansion planning in Power Distribution System (PDS) by focusing on (i) expansion strategy (ii) allocation of Circuit Breaker (CB), (iii) allocation of Distribution Static Compensator (DSTATCOM), (iv) Contingency Load Loss Index (CLLI), and power loss. Accordingly, the encoding parameters decide for expansion, Circuit Breaker (CB) placement, DSTATCOM placement, load of real and reactive powers of expanded bus or node are optimized using Grasshopper Optimization Algorithm (GOA) based on its distance and hence, the proposed algorithm is termed as Distance Oriented Grasshopper Optimization Algorithm (DGOA). The proposed expansion planning model is carried out in IEEE 33 test bus system. Moreover, the adopted scheme is compared with conventional algorithms and the optimal results are obtained.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Predicting energy consumption has been a substantial topic because of its ability to lessen energy wastage and establish an acceptable overall operational efficiency. Thus, this research aims at creating a meta-heuristic-based method for autonomous simulation of heating and cooling loads of buildings. The developed method is envisioned on two tiers, whereas the first tier encompasses the use of a set of meta-heuristic algorithms to amplify the exploration and exploitation of Elman neural network through both parametric and structural learning. In this regard, ten meta-heuristic were utilized, namely differential evolution, particle swarm optimization, invasive weed optimization, teaching-learning optimization, ant colony optimization, grey wolf optimization, grasshopper optimization, moth-flame optimization, antlion optimization, and arithmetic optimization. The second tier is designated for evaluating the meta-heuristic-based models through performance evaluation and statistical comparisons. Besides, an integrative ranking of the models is achieved using average ranking algorithm.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

This paper reports the use of a nature-inspired metaheuristic algorithm known as ‘Whale Optimization Algorithm’ (WOA) for multimodal image registration. WOA is based on the hunting behaviour of Humpback whales and provides better exploration and exploitation of the search space with small possibility of trapping in local optima. Though WOA is used in various optimization problems, no detailed study is available for its use in image registration. For this study different sets of NIR and visible images are considered. The registration results are compared with the other state of the art image registration methods. The results show that WOA is a very competitive algorithm for NIR-visible image registration. With the advantages of better exploration of search space and local optima avoidance, the algorithm can be a suitable choice for multimodal image registration.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

Nowadays, many people are suffering from several health related issues in which Coronary Artery Disease (CAD) is an important one. Identification, prevention and diagnosis of diseases is a very challenging task in the field of medical science. This paper proposes a new feature optimization technique known as PSO-Ensemble1 to reduce the number of features from CAD datasets. The proposed model is based on Particle Swarm Optimization (PSO) with Ensemble1 classifier as the objective function and is compared with other optimization techniques like PSO-CFSE and PSO-J48 with two benchmark CAD datasets. The main objective of this research work is to classify CAD with the proposed PSO-Ensemble1 model using the Ensemble Technique.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

In this article whale optimization algorithm (WOA) has been applied to solve the combined heat and power economic dispatch (CHPED) problem. The CHPED is energy system which provides both heat and power. Due to presence of valve point loading and the prohibited working region, the CHPED problems become more complex one. The main objective of CHPED problem is to minimize the total cost of fuel as well as heat with fulfill the load demand. This optimization technique shows several advantages like having few input variables, best quality of solution with rapid computational time. The recommended approach is carried out on three test systems. The simulation results of the present work certify the activeness of the proposed technique.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

The Chaotic Gravitational Search Algorithm (CGSA) is a physics-based heuristic algorithm inspired by Newton's law of universal gravitation. It uses 10 chaotic maps for optimal global search and fast convergence rate. The advantages of CGSA has been incorporated in various Mechanical and Civil engineering design frameworks which include Speed Reducer Design (SRD), Gear Train Design (GTD), Three Bar Truss Design (TBTD), Stepped Cantilever Beam Design (SCBD), Multiple Disc Clutch Brake Design (MDCBD), and Hydrodynamic Thrust Bearing Design (HTBD). The CGSA has been compared with eleven state of the art stochastic algorithms. In addition, a non-parametric statistical test namely the Signed Wilcoxon Rank-Sum test has been carried out at a 5% significance level to statistically validate the results. The simulation results indicate that CGSA shows efficient performance in terms of high convergence speed and minimization of the design parameter values as compared to other heuristic algorithms. The source codes are publicly available on Github i.e. https://github.com/SajadAHMAD1.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

In this article, a genetic algorithm (GA) is used for optimizing a metamodel of surface roughness (R_a ) in drilling glass-fibre reinforced plastic (GFRP) composites. A response surface methodology (RSM) based three levels (-1, 0, 1) design of experiments is used for developing the metamodel. Analysis of variance (ANOVA) is undertaken to determine the importance of each process parameter in the developed metamodel. Subsequently, after detailed metamodel adequacy checks, the insignificant terms are dropped to make the established metamodel more rigorous and make accurate predictions. A sensitivity analysis of the independent variables on the output response helps in determining the most influential parameters. It is observed that f is the most crucial parameter, followed by the t and D. The optimization results depict that the R_a increases as the f increases and a minor value of drill diameter is the most appropriate to attain minimum surface roughness. Finally, a robustness test of the predicted GA solution is carried out.


2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

This research presents a way of feature selection problem for classification of sentiments that use ensemble-based classifier. This includes a hybrid approach of minimum redundancy and maximum relevance (mRMR) technique and Forest Optimization Algorithm (FOA) (i.e. mRMR-FOA) based feature selection. Before applying the FOA on sentiment analysis, it has been used as feature selection technique applied on 10 different classification datasets publically available on UCI machine learning repository. The classifiers for example k-Nearest Neighbor (k-NN), Support Vector Machine (SVM) and Naïve Bayes used the ensemble based algorithm for available datasets. The mRMR-FOA uses the Blitzer’s dataset (customer reviews on electronic products survey) to select the significant features. The classification of sentiments has noticed to improve by 12 to 18%. The evaluated results are further enhanced by the ensemble of k-NN, NB and SVM with an accuracy of 88.47% for the classification of sentiment analysis task.


Sign in / Sign up

Export Citation Format

Share Document