A Quantum‐Behaved Particle‐Swarm‐Optimization‐Based KNN Classifier for Improving WSN Lifetime

2021 ◽  
pp. 117-129
Author(s):  
Ajmi Nader ◽  
Helali Abdelhamid ◽  
Mghaieth Ridha
2019 ◽  
Vol 14 (5) ◽  
pp. 422-431 ◽  
Author(s):  
Mingquan Ye ◽  
Weiwei Wang ◽  
Chuanwen Yao ◽  
Rong Fan ◽  
Peipei Wang

Background: Mining knowledge from microarray data is one of the popular research topics in biomedical informatics. Gene selection is a significant research trend in biomedical data mining, since the accuracy of tumor identification heavily relies on the genes biologically relevant to the identified problems. Objective: In order to select a small subset of informative genes from numerous genes for tumor identification, various computational intelligence methods were presented. However, due to the high data dimensions, small sample size, and the inherent noise available, many computational methods confront challenges in selecting small gene subset. Methods: In our study, we propose a novel algorithm PSONRS_KNN for gene selection based on the particle swarm optimization (PSO) algorithm along with the neighborhood rough set (NRS) reduction model and the K-nearest neighborhood (KNN) classifier. Results: First, the top-ranked candidate genes are obtained by the GainRatioAttributeEval preselection algorithm in WEKA. Then, the minimum possible meaningful set of genes is selected by combining PSO with NRS and KNN classifier. Conclusion: Experimental results on five microarray gene expression datasets demonstrate that the performance of the proposed method is better than existing state-of-the-art methods in terms of classification accuracy and the number of selected genes.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


Author(s):  
Fachrudin Hunaini ◽  
Imam Robandi ◽  
Nyoman Sutantra

Fuzzy Logic Control (FLC) is a reliable control system for controlling nonlinear systems, but to obtain optimal fuzzy logic control results, optimal Membership Function parameters are needed. Therefore in this paper Particle Swarm Optimization (PSO) is used as a fast and accurate optimization method to determine Membership Function parameters. The optimal control system simulation is carried out on the automatic steering system of the vehicle model and the results obtained are the vehicle's lateral motion error can be minimized so that the movement of the vehicle can always be maintained on the expected trajectory


2012 ◽  
Vol 3 (4) ◽  
pp. 1-4
Author(s):  
Diana D.C Diana D.C ◽  
◽  
Joy Vasantha Rani.S.P Joy Vasantha Rani.S.P ◽  
Nithya.T.R Nithya.T.R ◽  
Srimukhee.B Srimukhee.B

2009 ◽  
Vol 129 (3) ◽  
pp. 568-569
Author(s):  
Satoko Kinoshita ◽  
Atsushi Ishigame ◽  
Keiichiro Yasuda

Sign in / Sign up

Export Citation Format

Share Document