Energy Transfer Technologies to Monitor the Dynamics and Signaling Properties of G-Protein-Coupled Receptors in Living Cells

Author(s):  
Jean-Philippe Pin ◽  
Mohammed-Akli Ayoub ◽  
Damien Maurel ◽  
Julie Perroy ◽  
Eric Trinquet
2001 ◽  
Vol 114 (7) ◽  
pp. 1265-1271 ◽  
Author(s):  
G. Milligan

A range of approaches have recently provided evidence that G-protein-coupled receptors can exist as oligomeric complexes. Both homo-oligomers, comprising multiple copies of the same gene product, and hetero-oligomers containing more than one receptor have been detected. In several, but not all, examples, the extent of oligomerisation is regulated by the presence of agonist ligands, and emerging evidence indicates that receptor hetero-oligomers can display distinct pharmacological characteristics. A chaperonin-like role for receptor oligomerisation in effective delivery of newly synthesised receptors to the cell surface is a developing concept, and recent studies have employed a series of energy-transfer techniques to explore the presence and regulation of receptor oligomerisation in living cells. However, the majority of studies have relied largely on co-immunoprecipitation techniques, and there is still little direct information on the fraction of receptors existing as oligomers in intact cells.


2003 ◽  
Vol 31 (3) ◽  
pp. 461-471 ◽  
Author(s):  
D Devost ◽  
HH Zingg

The nonapeptide hormone oxytocin exerts many important biological functions, including uterine contractions during parturition and milk ejection during lactation. The manifold effects of oxytocin are mediated by a single oxytocin receptor (OTR) type, a member of the super-family of G-protein-coupled receptors. There is accumulating recent evidence that certain G-protein-coupled receptors exist in the form of oligomeric complexes. Here we demonstrate, using two different co-immunoprecipitation strategies as well as bioluminescence resonance energy transfer techniques, that the OTR is capable of forming oligomeric complexes in vivo and that these complexes exist at the cell surface membrane. The human OTR was N-terminally tagged with either a Myc or Flag epitope and transiently expressed in COS-7 cells. Cell lysates were immunoprecipitated using an anti-Flag antibody and analyzed by SDS-PAGE and Western blotting using an anti-Myc antibody, or vice versa. Either strategy provided evidence for the co-precipitation of Myc- or Flag-tagged OTR respectively.Biochemical characterization of OTR dimers showed that homodimer formation is not dependent on the establishment of disulfide bonds. The existence of OTR dimers and oligomers at the level of the cell surface was demonstrated by exposing intact living cells to an anti-Flag antibody and analyzing the immunoprecipitate by Western blotting with an anti-Myc antibody. This approach demonstrated furthermore that the presence of receptor oligomers at the cell surface is modulated by ligand in a time-dependent fashion. Finally, we obtained evidence that the OTR is forming oligomeric structures in intact living cells by observing the occurrence of bioluminescence resonance energy transfer in cells co-transfected with OTR constructs bearing at their C-terminus either a Renilla luciferase or the yellow fluorescent protein. Taken together, these data show that the OTR can form homodimers and oligomers in the cell model used and that these oligomers are present at the cell surface.


2011 ◽  
Vol 6 (11) ◽  
pp. 1748-1760 ◽  
Author(s):  
Ralf Schröder ◽  
Johannes Schmidt ◽  
Stefanie Blättermann ◽  
Lucas Peters ◽  
Nicole Janssen ◽  
...  

2010 ◽  
Vol 45 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Davide Calebiro ◽  
Viacheslav O Nikolaev ◽  
Martin J Lohse

G protein-coupled receptors (GPCRs) are the largest family of plasma membrane receptors. They mediate the effects of several endogenous cues and serve as important pharmacological targets. Although many biochemical events involved in GPCR signaling have been characterized in great detail, little is known about their spatiotemporal dynamics in living cells. The recent advent of optical methods based on fluorescent resonance energy transfer allows, for the first time, to directly monitor GPCR signaling in living cells. Utilizing these methods, it has been recently possible to show that the receptors for two protein/peptide hormones, the TSH and the parathyroid hormone, continue signaling to cAMP after their internalization into endosomes. This type of intracellular signaling is persistent and apparently triggers specific cellular outcomes. Here, we review these recent data and explain the optical methods used for such studies. Based on these findings, we propose a revision of the current model of the GPCR–cAMP signaling pathway to accommodate receptor signaling at endosomes.


2001 ◽  
Vol 277 (5) ◽  
pp. 3552-3559 ◽  
Author(s):  
Mark G. H. Scott ◽  
Alexandre Benmerah ◽  
Olivier Muntaner ◽  
Stefano Marullo

2017 ◽  
Vol 37 (2) ◽  
Author(s):  
Hui Guo ◽  
Su An ◽  
Richard Ward ◽  
Yang Yang ◽  
Ying Liu ◽  
...  

G-protein-coupled receptors (GPCRs), which constitute the largest family of cell surface receptors, were originally thought to function as monomers, but are now recognized as being able to act in a wide range of oligomeric states and indeed, it is known that the oligomerization state of a GPCR can modulate its pharmacology and function. A number of experimental techniques have been devised to study GPCR oligomerization including those based upon traditional biochemistry such as blue-native PAGE (BN-PAGE), co-immunoprecipitation (Co-IP) and protein-fragment complementation assays (PCAs), those based upon resonance energy transfer, FRET, time-resolved FRET (TR-FRET), FRET spectrometry and bioluminescence resonance energy transfer (BRET). Those based upon microscopy such as FRAP, total internal reflection fluorescence microscopy (TIRFM), spatial intensity distribution analysis (SpIDA) and various single molecule imaging techniques. Finally with the solution of a growing number of crystal structures, X-ray crystallography must be acknowledged as an important source of discovery in this field. A different, but in many ways complementary approach to the use of more traditional experimental techniques, are those involving computational methods that possess obvious merit in the study of the dynamics of oligomer formation and function. Here, we summarize the latest developments that have been made in the methods used to study GPCR oligomerization and give an overview of their application.


Author(s):  
Yiwei Zhou ◽  
Jiyong Meng ◽  
Chanjuan Xu ◽  
Jianfeng Liu

G protein-coupled receptors (GPCRs) represent one of the largest membrane protein families that participate in various physiological and pathological activities. Accumulating structural evidences have revealed how GPCR activation induces conformational changes to accommodate the downstream G protein or β-arrestin. Multiple GPCR functional assays have been developed based on Förster resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET) sensors to monitor the conformational changes in GPCRs, GPCR/G proteins, or GPCR/β-arrestin, especially over the past two decades. Here, we will summarize how these sensors have been optimized to increase the sensitivity and compatibility for application in different GPCR classes using various labeling strategies, meanwhile provide multiple solutions in functional assays for high-throughput drug screening.


Sign in / Sign up

Export Citation Format

Share Document