functional assays
Recently Published Documents


TOTAL DOCUMENTS

702
(FIVE YEARS 240)

H-INDEX

49
(FIVE YEARS 11)

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Change Qi ◽  
Jianwei Liu ◽  
Pengnv Guo ◽  
Yali Xu ◽  
Jing Hu ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) have been reported to be vital factors to affect the expression of genes and proteins. Also, it has been proved that the abnormal expression or mutation of lncRNAs stands as a signal of metastasis and proliferation of cancer. Nevertheless, the majority of lncRNAs still need to be explored in abundant cancers especially in oral squamous cell carcinoma (OSCC). Methods RT-qPCR assays were applied to test the expression of RNAs. Mechanism assays were performed to verify the combination among NORAD, TPM4 and miR-577. Also, functional assays were conducted to verify the function of RNAs on OSCC cells. Results LncRNA NORAD was highly expressed in OSCC tissues and cells. NORAD silencing repressed the biological behaviors of OSCC cells. MiR-577 was found in OSCC with low expression, and RIP assays illustrated that NORAD, miR-577 and TPM4 coexisted in RNA-induced silencing complexes. Rescue assays proved that the overexpression of TPM4 could recover the effect of NORAD silencing on OSCC progression. Conclusions It was revealed that NORAD functioned as a tumor promoter to sponge miR-577 thus elevating TPM4 in OSCC, which indicated that NORAD was worthy to be studied as a target for the treatment of OSCC.


2022 ◽  
Author(s):  
Jayanth Surya Narayanan Shankara Narayanan ◽  
Katie Frizzi ◽  
Suna Erdem ◽  
Partha Ray ◽  
David Jaroch ◽  
...  

Abstract Purpose: There is a great need to reduce the toxicity of chemotherapy used in the management of pancreatic ductal adenocarcinoma (PDAC). Here we explore if regional pressurized delivery of oxaliplatin can minimize peripheral neuropathy in mice.Methods: We used an orthotopic PDAC mouse model and delivered a single dose of oxaliplatin through the portal vein using a pressure-enabled system (pancreatic retrograde venous infusion, PRVI). We analyzed the effects of PRVI on tumor burden and peripheral neuropathy using histopathological and functional assays.Results: Tumor weights in mice treated with 2 mg/Kg oxaliplatin using PRVI were significantly lower than in mice treated with the same dose systemically. This resulted in reduced peripheral neuropathy signatures in PRVI mice compared to the 20 mg/Kg systemic dose required to achieve similar tumor control.Conclusion: Regional delivery of highly cytotoxic agents using PRVI can reduce the therapeutic dose of these drugs, thereby lowering toxic side effects.


Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 136
Author(s):  
Miquéias Lopes-Pacheco ◽  
Mafalda Bacalhau ◽  
Sofia S. Ramalho ◽  
Iris A. L. Silva ◽  
Filipa C. Ferreira ◽  
...  

Although some therapeutic progress has been achieved in developing small molecules that correct F508del-CFTR defects, the mechanism of action (MoA) of these compounds remain poorly elucidated. Here, we investigated the effects and MoA of MCG1516A, a newly developed F508del-CFTR corrector. MCG1516A effects on wild-type (WT) and F508del-CFTR were assessed by immunofluorescence microscopy, and biochemical and functional assays both in cell lines and in intestinal organoids. To shed light on the MoA of MCG1516A, we evaluated its additivity to the FDA-approved corrector VX-661, low temperature, genetic revertants of F508del-CFTR (G550E, R1070W, and 4RK), and the traffic-null variant DD/AA. Finally, we explored the ability of MCG1516A to rescue trafficking and function of other CF-causing mutations. We found that MCG1516A rescues F508del-CFTR with additive effects to VX-661. A similar behavior was observed for WT-CFTR. Under low temperature incubation, F508del-CFTR demonstrated an additivity in processing and function with VX-661, but not with MCG1516A. In contrast, both compounds promoted additional effects to low temperature to WT-CFTR. MCG1516A demonstrated additivity to genetic revertant R1070W, while VX-661 was additive to G550E and 4RK. Nevertheless, none of these compounds rescued DD/AA trafficking. Both MCG1516A and VX-661 rescued CFTR processing of L206W- and R334W-CFTR with greater effects when these compounds were combined. In summary, the absence of additivity of MCG1516A to genetic revertant G550E suggests a putative binding site for this compound on NBD1:NBD2 interface. Therefore, a combination of MCG1516A with compounds able to rescue DD/AA traffic, or mimicking the actions of revertant R1070W (e.g., VX-661), could enhance correction of F508del-CFTR defects.


Author(s):  
Xiaomeng Shi ◽  
Qihua Liu ◽  
Ruixiao Zhang ◽  
Zhiying Liu ◽  
Wencong Guo ◽  
...  

Gitelman syndrome (GS) is a kind of salt-losing tubular disease, most of which is caused by SLC12A3 gene variants, and missense variants account for the majority. Recently, the phenomenon of exon skipping, in which exonic variants disrupt normal pre-mRNA splicing, has been related to a variety of diseases. The purpose of this study was to identify the effect of previously presumed missense SLC12A3 variants on pre-mRNA splicing using bioinformatics tools and minigenes. The results revealed that, among ten candidate variants, six variants (c.602G>A, c.602G>T, c.1667C>T, c.1925G>A, c.2548G>C and c.2549G>C) led to complete or incomplete exon skipping by affecting exonic splicing regulatory elements and/or disturbing canonical splice sites. It is worth mentioning that this is the largest study on pre-mRNA splicing of SLC12A3 exonic variants. In addition, our study emphasizes the importance of detecting splicing function at the mRNA level in GS and indicates that minigene analysis is a valuable tool for splicing functional assays of variants in vitro.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Fred D Mast ◽  
Peter C Fridy ◽  
Natalia E Ketaren ◽  
Junjie Wang ◽  
Erica Y Jacobs ◽  
...  

The emergence of SARS-CoV-2 variants threatens current vaccines and therapeutic antibodies and urgently demands powerful new therapeutics that can resist viral escape. We therefore generated a large nanobody repertoire to saturate the distinct and highly conserved available epitope space of SARS-CoV-2 spike, including the S1 receptor binding domain, N-terminal domain, and the S2 subunit, to identify new nanobody binding sites that may reflect novel mechanisms of viral neutralization. Structural mapping and functional assays show that indeed these highly stable monovalent nanobodies potently inhibit SARS-CoV-2 infection, display numerous neutralization mechanisms, are effective against emerging variants of concern, and are resistant to mutational escape. Rational combinations of these nanobodies that bind to distinct sites within and between spike subunits exhibit extraordinary synergy and suggest multiple tailored therapeutic and prophylactic strategies.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Jing Li ◽  
Song Peng ◽  
Liepeng Zhong ◽  
Lisheng Zhou ◽  
Guorong Yan ◽  
...  

Abstract Background Carcass length is very important for body size and meat production for swine, thus understanding the genetic mechanisms that underly this trait is of great significance in genetic improvement programs for pigs. Although many quantitative trait loci (QTL) have been detected in pigs, very few have been fine-mapped to the level of the causal mutations. The aim of this study was to identify potential causal single nucleotide polymorphisms (SNPs) for carcass length by integrating a genome-wide association study (GWAS) and functional assays. Results Here, we present a GWAS in a commercial Duroc × (Landrace × Yorkshire) (DLY) population that reveals a prominent association signal (P = 4.49E−07) on pig chromosome 17 for carcass length, which was further validated in two other DLY populations. Within the detected 1 Mb region, the BMP2 gene stood out as the most likely causal candidate because of its functions in bone growth and development. Whole-genome gene expression studies showed that the BMP2 gene was differentially expressed in the cartilage tissues of pigs with extreme carcass length. Then, we genotyped an additional 267 SNPs in 500 selected DLY pigs, followed by further whole-genome SNP imputation, combined with deep genome resequencing data on multiple pig breeds. Reassociation analyses using genotyped and imputed SNP data revealed that the rs320706814 SNP, located approximately 123 kb upstream of the BMP2 gene, was the strongest candidate causal mutation, with a large association with carcass length, with a ~ 4.2 cm difference in length across all three DLY populations (N = 1501; P = 3.66E−29). This SNP segregated in all parental lines of the DLY (Duroc, Large White and Landrace) and was also associated with a significant effect on body length in 299 pure Yorkshire pigs (P = 9.2E−4), which indicates that it has a major value for commercial breeding. Functional assays showed that this SNP is likely located within an enhancer and may affect the binding affinity of transcription factors, thereby regulating BMP2 gene expression. Conclusions Taken together, these results suggest that the rs320706814 SNP on pig chromosome 17 is a putative causal mutation for carcass length in the widely used DLY pigs and has great value in breeding for body size in pigs.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Hua Ding ◽  
Yaqin Huang ◽  
Jiazhong Shi ◽  
Liwei Wang ◽  
Sha Liu ◽  
...  

Abstract Background SWI/SNF, a well-known ATP-dependent chromatin-remodeling complex, plays an essential role in several biological processes. SNF5, the core subunit of the SWI/SNF remodeling complex, inactivated in 95% of malignant rhabdoid tumors (MRT), highlighting its significance in tumorigenesis. However, the role of SNF5 in bladder cancer (BC) remains unknown. In this study, we aimed to investigate the function and potential clinical applicability of SNF5 in BC. Methods Data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Cancer Cell Line Encyclopedia (CCLE) databases were used to evaluate the clinical significance of SNF5 in BC. We performed Gene Set Enrichment Analysis (GSEA) and functional assays to investigate the role of SNF5 in BC. Genomics of Drug Sensitivity in Cancer (GDSC) and drug-susceptibility tests were performed to identify the potential value of SNF5 in the treatment of BC. Results Low SNF5 expression conferred a poor prognosis and was significantly associated with the N-stage in BC. ROC curves indicated that SNF5 could distinguish BC from the normal tissues. In vitro and in vivo functional assays demonstrated that attenuated SNF5 expression could promote cell proliferation and enhance migration by STAT3 activation. We imputed that low SNF5 expression could confer greater resistance against conventional first-line drugs, including cisplatin and gemcitabine in BC. GDSC and drug-resistance assays suggested that low SNF5 expression renders T24 and 5637 cells high sensitivity to EGFR inhibitor gefitinib, and combination of EZH2 inhibitor GSK126 and cisplatin. Conclusions To the best of our knowledge, the present study, for the first time, showed that low SNF5 expression could promote cell proliferation and migration by activating STAT3 and confer poor prognosis in BC. Importantly, SNF5 expression may be a promising candidate for identifying BC patients who could benefit from EGFR-targeted chemotherapy or cisplatin in combination with EZH2 inhibitor treatment regimens.


2021 ◽  
Author(s):  
Alan F Rubin ◽  
Joseph K Min ◽  
Nathan J Rollins ◽  
Estelle Y Da ◽  
Daniel Esposito ◽  
...  

A central problem in genomics is understanding the effect of individual DNA variants. Multiplexed Assays of Variant Effect (MAVEs) can help address this challenge by measuring all possible single nucleotide variant effects in a gene or regulatory sequence simultaneously. Here we describe MaveDB v2, which has become the database of record for MAVEs. MaveDB now contains a large fraction of published studies, comprising over two hundred datasets and three million variant effect measurements. We created tools and APIs to streamline data submission and access, transforming MaveDB into a hub for the analysis and dissemination of these impactful datasets.


2021 ◽  
Author(s):  
Joshua D'Rozario ◽  
Konstantin Knoblich ◽  
Mechthild Luetge ◽  
Christian Perez Shibayama ◽  
Hung-Wei Cheng ◽  
...  

The lymph node (LN) is home to resident macrophage populations that are essential for immune function and homeostasis. The T cell paracortical zone is a major site of macrophage efferocytosis of apoptotic cells, but key factors controlling this niche are undefined. Here we show that fibroblastic reticular cells (FRCs) are an essential component of the LN macrophage niche. Macrophages co-localised with FRCs in human LNs, and murine single-cell RNA-sequencing revealed that most reticular cells expressed master macrophage regulator CSF1. Functional assays showed that CSF1R signalling was sufficient to support macrophage development. In the presence of LPS, FRCs underwent a mechanistic switch and maintained support through CSF1R-independent mechanisms. These effects were conserved between mouse and human systems. Rapid loss of macrophages and monocytes from LNs was observed upon genetic ablation of FRCs. These data reveal a critically important role for FRCs in the creation of the parenchymal macrophage niche within LNs.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5878
Author(s):  
Ilaria Magagna ◽  
Nicolas Gourdin ◽  
Yann Kieffer ◽  
Monika Licaj ◽  
Rana Mhaidly ◽  
...  

Background: Cancer-associated fibroblasts (CAF) are heterogeneous with multiple functions in breast cancer. Recently, we identified a specific CAF subpopulation (referred to as CAF-S1), which promotes immunosuppression and immunotherapy resistance. Methods and Results: Here, by studying a large collection of human samples, we highlight the key function of CD73/NT5E in CAF-S1-mediated immunosuppression in breast cancer. We first reveal that CD73 protein level specifically accumulates in CAF-S1 in breast cancer patients. Interestingly, infiltration of regulatory T lymphocytes (Tregs) is significantly correlated with CD73 expression in stroma but not in epithelium, indicating that CD73 contributes to immunosuppression when expressed in CAF-S1 and not in tumor cells. By performing functional assays based on relevant systems using primary CAF-S1 isolated from patients, we demonstrate that CAF-S1 increase the content in both PD-1+ and CTLA-4+ Tregs. Importantly, the use of a blocking anti-CD73 antibody on CAF-S1 reduces CAF-S1-mediated immunosuppression by preventing expression of these immune checkpoints on Tregs. Conclusions: Our data support the potential clinical benefit of using both anti-CD73 and immune-checkpoint inhibitors in breast cancer patients for inhibiting CAF-S1-mediated immunosuppression and enhancing anti-tumor immune response.


Sign in / Sign up

Export Citation Format

Share Document