scholarly journals Constructing Active Sites from Atomic‐Scale Geometrical Engineering in Spinel Oxide Solid Solutions for Efficient and Robust Oxygen Evolution Reaction Electrocatalysts

2021 ◽  
pp. 2101653
Author(s):  
Xin Yue ◽  
Xueping Qin ◽  
Yangdong Chen ◽  
Yang Peng ◽  
Caihong Liang ◽  
...  
2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Weikai Xiang ◽  
Nating Yang ◽  
Xiaopeng Li ◽  
Julia Linnemann ◽  
Ulrich Hagemann ◽  
...  

AbstractThe three-dimensional (3D) distribution of individual atoms on the surface of catalyst nanoparticles plays a vital role in their activity and stability. Optimising the performance of electrocatalysts requires atomic-scale information, but it is difficult to obtain. Here, we use atom probe tomography to elucidate the 3D structure of 10 nm sized Co2FeO4 and CoFe2O4 nanoparticles during oxygen evolution reaction (OER). We reveal nanoscale spinodal decomposition in pristine Co2FeO4. The interfaces of Co-rich and Fe-rich nanodomains of Co2FeO4 become trapping sites for hydroxyl groups, contributing to a higher OER activity compared to that of CoFe2O4. However, the activity of Co2FeO4 drops considerably due to concurrent irreversible transformation towards CoIVO2 and pronounced Fe dissolution. In contrast, there is negligible elemental redistribution for CoFe2O4 after OER, except for surface structural transformation towards (FeIII, CoIII)2O3. Overall, our study provides a unique 3D compositional distribution of mixed Co-Fe spinel oxides, which gives atomic-scale insights into active sites and the deactivation of electrocatalysts during OER.


2020 ◽  
Author(s):  
Ioannis Spanos ◽  
Justus Masa ◽  
Aleksandar Zeradjanin ◽  
Robert Schlögl

AbstractThere is an ongoing debate on elucidating the actual role of Fe impurities in alkaline water electrolysis, acting either as reactivity mediators or as co-catalysts through synergistic interaction with the main catalyst material. This perspective summarizes the most prominent oxygen evolution reaction (OER) mechanisms mostly for Ni-based oxides as model transition metal catalysts and highlights the effect of Fe incorporation on the catalyst surface in the form of impurities originating from the electrolyte or co-precipitated in the catalyst lattice, in modulating the OER reaction kinetics, mechanism and stability. Graphic Abstract


Nanoscale ◽  
2021 ◽  
Author(s):  
Ya-Nan Zhou ◽  
Ruo-Yao Fan ◽  
Yu-Ning Cao ◽  
Hui-Ying Wang ◽  
Bin Dong ◽  
...  

The oriental distribution and strong conjunction of Fe active sites in multiple metals hydroxides are very crucial to modulate the activity and stability for efficient oxygen evolution reaction (OER). Whereas,...


Author(s):  
Kaiyao Wu ◽  
Fei Chu ◽  
Yuying Meng ◽  
Kaveh Edalati ◽  
Qingsheng Gao ◽  
...  

Transition metal-based amorphous alloys have attracted increasing attention as precious-metal-free electrocatalysts for oxygen evolution reaction (OER) of water splitting due to their high macro-conductivity and abundant surface active sites. However,...


2021 ◽  
Author(s):  
Qiaoling Kang ◽  
Dawei Lai ◽  
Wenyin Tang ◽  
Qingyi Lu ◽  
Feng Gao

Effective strategies to increase the intrinsic activity by electronic modulation and to increase the number of active sites by structural design are discussed for improving the oxygen evolution activities of NiFe alloys.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gang Zhou ◽  
Peifang Wang ◽  
Hao Li ◽  
Bin Hu ◽  
Yan Sun ◽  
...  

AbstractOxygen evolution reaction (OER) plays a determining role in electrochemical energy conversion devices, but challenges remain due to the lack of effective low-cost electrocatalysts and insufficient understanding about sluggish reaction kinetics. Distinguish from complex nano-structuring, this work focuses on the spin-related charge transfer and orbital interaction between catalysts and intermediates to accelerate catalytic reaction kinetics. Herein, we propose a simple magnetic-stimulation approach to rearrange spin electron occupation in noble-metal-free metal-organic frameworks (MOFs) with a feature of thermal-differentiated superlattice, in which the localized magnetic heating in periodic spatial distribution makes the spin flip occur at particular active sites, demonstrating a spin-dependent reaction pathway. As a result, the spin-rearranged Co0.8Mn0.2 MOF displays mass activities of 3514.7 A gmetal−1 with an overpotential of ~0.27 V, which is 21.1 times that of pristine MOF. Our findings provide a new paradigm for designing spin electrocatalysis and steering reaction kinetics.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yubing Yan

Developing efficient and low-cost replacements for noble metals as electrocatalysts for the oxygen evolution reaction (OER) remain a great challenge. Herein, we report a needle-like cobalt carbonate hydroxide hydrate (Co(CO3)0.5OH·0.11H2O) nanoarrays, which in situ grown on the surface of carbon cloth through a facile one-step hydrothermal method. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations demonstrate that the Co(CO3)0.5OH nanoarrays with high porosity is composed of numerous one-dimensional (1D) nanoneedles. Owing to unique needle-like array structure and abundant exposed active sites, the Co(CO3)0.5OH@CC only requires 317 mV of overpotential to reach a current density of 10 mA cm−2, which is much lower than those of Co(OH)2@CC (378 mV), CoCO3@CC (465 mV) and RuO2@CC (380 mV). For the stability, there is no significant attenuation of current density after continuous operation 27 h. This work paves a facile way to the design and construction of electrocatalysts for the OER.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaili Zhang ◽  
Xinhui Xia ◽  
Shengjue Deng ◽  
Yu Zhong ◽  
Dong Xie ◽  
...  

Abstract Controllable synthesis of highly active micro/nanostructured metal electrocatalysts for oxygen evolution reaction (OER) is a particularly significant and challenging target. Herein, we report a 3D porous sponge-like Ni material, prepared by a facile hydrothermal method and consisting of cross-linked micro/nanofibers, as an integrated binder-free OER electrocatalyst. To further enhance the electrocatalytic performance, an N-doping strategy is applied to obtain N-doped sponge Ni (N-SN) for the first time, via NH3 annealing. Due to the combination of the unique conductive sponge structure and N doping, the as-obtained N-SN material shows improved conductivity and a higher number of active sites, resulting in enhanced OER performance and excellent stability. Remarkably, N-SN exhibits a low overpotential of 365 mV at 100 mA cm−2 and an extremely small Tafel slope of 33 mV dec−1, as well as superior long-term stability, outperforming unmodified sponge Ni. Importantly, the combination of X-ray photoelectron spectroscopy and near-edge X-ray adsorption fine structure analyses shows that γ-NiOOH is the surface-active phase for OER. Therefore, the combination of conductive sponge structure and N-doping modification opens a new avenue for fabricating new types of high-performance electrodes with application in electrochemical energy conversion devices.


Sign in / Sign up

Export Citation Format

Share Document