high porosity
Recently Published Documents


TOTAL DOCUMENTS

2652
(FIVE YEARS 1056)

H-INDEX

70
(FIVE YEARS 19)

Author(s):  
Melissa C. Richards ◽  
Kathleen A. Issen ◽  
Mathew D. Ingraham

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 277
Author(s):  
Miral Al Sharabati ◽  
Rana Sabouni ◽  
Ghaleb A. Husseini

Metal−organic frameworks (MOFs) are a novel class of porous hybrid organic−inorganic materials that have attracted increasing attention over the past decade. MOFs can be used in chemical engineering, materials science, and chemistry applications. Recently, these structures have been thoroughly studied as promising platforms for biomedical applications. Due to their unique physical and chemical properties, they are regarded as promising candidates for disease diagnosis and drug delivery. Their well-defined structure, high porosity, tunable frameworks, wide range of pore shapes, ultrahigh surface area, relatively low toxicity, and easy chemical functionalization have made them the focus of extensive research. This review highlights the up-to-date progress of MOFs as potential platforms for disease diagnosis and drug delivery for a wide range of diseases such as cancer, diabetes, neurological disorders, and ocular diseases. A brief description of the synthesis methods of MOFs is first presented. Various examples of MOF-based sensors and DDSs are introduced for the different diseases. Finally, the challenges and perspectives are discussed to provide context for the future development of MOFs as efficient platforms for disease diagnosis and drug delivery systems.


2022 ◽  
Vol 9 ◽  
Author(s):  
Xingying Wang ◽  
Na Liu ◽  
Junxiang Nan ◽  
Xiaolin Wang ◽  
Dazhong Ren

In this article, the characteristics of Chang 8 reservoir of Triassic Yanchang Formation in northern Shaanxi are studied by using polarizing microscope, field emission scanning electron microscope, image particle size, X-ray diffraction analysis of clay, and constant pressure mercury intrusion. The study shows that the target layer is in a relatively stable and uniform sinking burial period after deposition, and the lithology composition in the area is relatively complex, mainly composed of debris–feldspar sandstone and feldspar sandstone, with the characteristics of fine grain and high content of interstitial material. The porosity of the reservoir is generally between 4% and 12%, with an average of 8.05%. The permeability is generally between 0.03 × 10−3 and 0.5 × 10−3 μm2, with an average of 0.16 × 10−3 μm2. Strong compaction and well-developed cementation of calcareous, siliceous, and authigenic illite are important reasons for the formation of extra-low porosity and extra-low permeability reservoirs. But at the same time, because of the protective effect of chlorite film, some residual intergranular pores are preserved, which makes the some reservoirs with relatively good physical property, forming a local relatively high-porosity and high-permeability section of the “highway.”


2022 ◽  
Vol 11 (2) ◽  
pp. 321-330
Author(s):  
Shuna Chen ◽  
Hengzhong Fan ◽  
Yunfeng Su ◽  
Wensheng Li ◽  
Jicheng Li ◽  
...  

AbstractCubic boron nitride (cBN) with high hardness, thermal conductivity, wear resistance, and chemical inertness has become the most promising abrasive and machining material. Due to the difficulty of fabricating pure cBN body, generally, some binders are incorporated among cBN particles to prepare polycrystalline cubic boron nitride (PcBN). Hence, the binders play a critical factor to the performances of PcBN composites. In this study, the PcBN composites with three binder systems containing ceramic and metal phases were fabricated by spark plasma sintering (SPS) from 1400 to 1700 °C. The sintering behaviors and mechanical properties of the composites were investigated. Results show that the effect of binder formulas on mechanical properties mainly related to the compactness, mechanical performances, and thermal expansion coefficient of binder phases, which affect the carrying capacity of the composites and the bonding strength between binder phases and cBN particles. The PcBN composite with SiAlON phase as binder presented optimal flexural strength (465±29 MPa) and fracture toughness (5.62±0.37 MPa·m1/2), attributing to the synergistic effect similar to transgranular and intergranular fractures. Meanwhile, the excellent mechanical properties can be maintained a comparable level when the temperature even rises to 800 °C. Due to the weak bonding strength and high porosity, the PcBN composites with Al2O3-ZrO2(3Y) and Al-Ti binder systems exhibited inferior mechanical properties. The possible mechanisms to explain these results were also analyzed.


Computation ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Riheb Mabrouk ◽  
Hassane Naji ◽  
Hacen Dhahri ◽  
Zouhir Younsi

In this investigation, a comprehensive numerical analysis of the flow involved in an open-ended straight channel fully filled with a porous metal foam saturated and a phase change material (paraffin) has been performed using a single relaxation time lattice Boltzmann method (SRT-LBM) at the representative elementary volume (REV) scale. The enthalpy-based approach with three density functions has been employed to cope with the governing equations under the local thermal non-equilibrium (LTNE) condition. The in-house code has been validated through a comparison with a previous case in literature. The pore per inch density (10≤PPI≤60) and porosity (0.7≤ε≤0.9) effects of the metal structure were analyzed during melting/solidifying phenomena at two Reynolds numbers (Re = 200 and 400). The relevant findings are discussed for the LTNE intensity and the entropy generation rate (Ns). Through the simulations, the LTNE hypothesis turned out to be secure and valid. In addition, it is maximum for small PPI value (=10) whatever the parameters deemed. On the other hand, high porosity (=0.9) is advised to reduce the system’s irreversibility. However, at a moderate Re (=200), a small PPI (=10) would be appropriate to mitigate the system irreversibility during the charging case, while a large value (PPI = 60) might be advised for the discharging case. In this context, it can be stated that during the melting period, low porosity (=0.7) with low PPI (=10) improves thermal performance, reduces the system irreversibility and speeds up the melting rate, while for high porosity (=0.9), a moderate PPI (=30) should be used during the melting process to achieve an optimal system.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 453
Author(s):  
Andrea Petrella ◽  
Sabino De De Gisi ◽  
Milvia Elena Di Di Clemente ◽  
Francesco Todaro ◽  
Ubaldo Ayr ◽  
...  

Environmentally sustainable cement mortars containing wheat straw (Southern Italy, Apulia region) of different length and dosage and perlite beads as aggregates were prepared and characterised by rheological, thermal, acoustic, mechanical, optical and microstructural tests. A complete replacement of the conventional sand was carried out. Composites with bare straw (S), perlite (P), and with a mixture of inorganic and organic aggregates (P/S), were characterised and compared with the properties of conventional sand mortar. It was observed that the straw fresh composites showed a decrease in workability with fibre length decrease and with increase in straw volume, while the conglomerates with bare perlite, and with the aggregate mixture, showed similar consistency to the control. The thermal insulation of the straw mortars was extremely high compared to the sand reference (85–90%), as was the acoustic absorption, especially in the 500–1000 Hz range. These results were attributed to the high porosity of these composites and showed enhancement of these properties with decrease in straw length and increase in straw volume. The bare perlite sample showed the lowest thermal insulation and acoustic absorption, being less porous than the former composites, while intermediate values were obtained with the P/S samples. The mechanical performance of the straw composites increased with length of the fibres and decreased with fibre dosage. The addition of expanded perlite to the mixture produced mortars with an improvement in mechanical strength and negligible modification of thermal properties. Straw mortars showed discrete cracks after failure, without separation of the two parts of the specimens, due to the aggregate tensile strength which influenced the impact compression tests. Preliminary observations of the stability of the mortars showed that, more than one year from preparation, the conglomerates did not show detectable signs of degradation.


Soil Systems ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 5
Author(s):  
Klaus von Wilpert

Mankind expects from forests and forest soils benefits like pure drinking water, space for recreation, habitats for nature-near biocenoses and the production of timber as unrivaled climate-friendly raw material. An overview over 208 recent articles revealed that ecosystem services are actually the main focus in the perception of forest soil functions. Studies on structures and processes that are the basis of forest soil functions and ecosystem services are widely lacking. Therefore, additional literature was included dealing with the distinct soil structure and high porosity and pore continuity of forest soils, as well as with their high biological activity and chemical soil reaction. Thus, the highly differentiated, hierarchical soil structure in combination with the ion exchange capacity and the acid buffering capacity could be described as the main characteristics of forest soils confounding the desired ecosystem services. However, some of these functions of forest soils are endangered under the influence of environmental change or even because of forest management, like mono-cultures or soil compaction through forest machines. In the face of the high vulnerability of forest soils and increased threads, e.g., through soil acidification, it is evident that active soil management strategies must be implemented with the aim to counteract the loss of soil functions or to recover them.


Author(s):  
Sayantan Ghosh

AbstractDrilling deviated wells has become customary in recent times. This work condenses various highly deviated and horizontal well log interpretation techniques supported by field examples. Compared to that in vertical wells, log interpretation in highly deviated wells is complex because the readings are affected not only by the host bed but also the adjacent beds and additional wellbore-related issues. However, understanding the potential pitfalls and combining information from multiple logs can address some of the challenges. For example, a non-azimuthally focused gamma ray logging while drilling (LWD) tool, used in combination with azimuthally focused density and neutron porosity tools, can accurately tell if an adjacent approaching bed is overlying or underlying. Moreover, resistivity logs in horizontal wells are effective in detecting the presence of adjacent beds. Although the horns associated with resistivity measurements in highly deviated wells are unwanted, their sizes can provide important clues about the angle of the borehole with respect to the intersecting beds. Inversion of horizontal/deviated well logs can also help determine true formation resistivities. Additionally, observed disagreement between resistivity readings with nuclear magnetic resonance (NMR) T2 hydrocarbon peaks can indicate the presence or absence of hydrocarbons. Furthermore, variations in pulsed neutron capture cross sections along horizontal wells, measured while injecting various fluids, can indicate high porosity/permeability unperforated productive zones. Finally, great advances have been made in the direction of the bed geometry determination and geologic modeling using the mentioned deviated well logs. More attention is required toward quantitative log interpretation in horizontal/high angle wells for determining the amount of hydrocarbons in place.


Energy ◽  
2022 ◽  
Vol 238 ◽  
pp. 121831
Author(s):  
Mohammadmehdi Namazi ◽  
Mohammadreza Nayebi ◽  
Amin Isazadeh ◽  
Ali Modarresi ◽  
Iman Ghasemi Marzbali ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document