Frontispiece: Redox Active Metal- and Covalent Organic Frameworks for Energy Storage: Balancing Porosity and Electrical Conductivity

2017 ◽  
Vol 23 (65) ◽  
Author(s):  
Yugen Zhang ◽  
Siti Nurhanna Riduan ◽  
Jinquan Wang
2019 ◽  
Vol 58 (20) ◽  
pp. 14145-14150 ◽  
Author(s):  
Xinran Zhang ◽  
Ivan da Silva ◽  
Rodrigo Fazzi ◽  
Alena M. Sheveleva ◽  
Xue Han ◽  
...  

Author(s):  
James E. Miller ◽  
Andrea Ambrosini ◽  
Sean M. Babiniec ◽  
Eric N. Coker ◽  
Clifford K. Ho ◽  
...  

Thermochemical energy storage (TCES) offers the potential for greatly increased storage density relative to sensible-only energy storage. Moreover, heat may be stored indefinitely in the form of chemical bonds via TCES, accessed upon demand, and converted to heat at temperatures significantly higher than current solar thermal electricity production technology and is therefore well-suited to more efficient high-temperature power cycles. The PROMOTES effort seeks to advance both materials and systems for TCES through the development and demonstration of an innovative storage approach for solarized Air-Brayton power cycles and that is based on newly-developed redox-active metal oxides that are mixed ionic-electronic conductors (MIEC). In this paper we summarize the system concept and review our work to date towards developing materials and individual components.


2005 ◽  
Vol 33 (1) ◽  
pp. 113-118 ◽  
Author(s):  
C.S. Butler ◽  
D.J. Richardson

Over the last 10 years, during the lifetime of the nitrogen cycle meetings, structural biology, coupled with spectroscopy, has had a major impact of our understanding enzymology of the nitrogen cycle. The three-dimensional structures for many of the key enzymes have now been resolved and have provided a wealth of information regarding the architecture of redox active metal sites, as well as revealing novel structural folds. Coupled with structure-based spectroscopic analysis, this has led to new insight into the reaction mechanisms of the diverse chemical transformations that together cycle nitrogen in the biosphere. An overview of the some of the key developments in field over the last decade is presented.


Nanoscale ◽  
2017 ◽  
Vol 9 (23) ◽  
pp. 7977-7990 ◽  
Author(s):  
Nataliya A. Samoylova ◽  
Stanislav M. Avdoshenko ◽  
Denis S. Krylov ◽  
Hannah R. Thompson ◽  
Amelia C. Kirkhorn ◽  
...  

Three instances of the involvement of dioxygen-derived radicals in biological systems are considered. The first concerns the formation of radicals in the haemolytic reactions induced by treatment of erythrocytes by phenylhydrazine, as an example of the so-called ‘oxidant drugs’. The evidence for the formation of phenyl radicals is considered and their origin in the oxidation of phenylhydrazine by a ferryl derivative of haemoglobin postulated. The relevance to the formation of phenylated iron and porphyrin species is described. It is suspected that many instances of oxidative damage to cellular systems result from the coincidence of unsequestered redox-active metal ions (particularly those of iron and copper), reductants, and dioxygen. As an example, the damage to hepatocytes, grown in a culture medium containing cysteine, is described. The formation of radical species derived from dioxygen during the respiratory burst associated with phagocytosis is discussed. A new electrochemical method of detecting the superoxide ion produced during the respiratory burst is described. Particular emphasis is placed on the relation between the production of radical species such as the hydroxyl radical and the superoxide ion, and the extent of phagocytosis.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Julia Oktawiec ◽  
Henry Z. H. Jiang ◽  
Jenny G. Vitillo ◽  
Douglas A. Reed ◽  
Lucy E. Darago ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document