Nucleic Acid Related Compounds. Part 125. Fluoro, Alkylsulfanyl, and Alkylsulfonyl Leaving Groups in Suzuki Cross-Coupling Reactions of Purine 2′-Deoxynucleosides and Nucleosides.

ChemInform ◽  
2005 ◽  
Vol 36 (33) ◽  
Author(s):  
Jiangqiong Liu ◽  
Morris J. Robins
Heterocycles ◽  
2012 ◽  
Vol 86 (2) ◽  
pp. 791 ◽  
Author(s):  
Pedro Merino ◽  
Tomas Tejero ◽  
Eduardo Marca ◽  
Fernando Gomollón-Bel ◽  
Ignacio Delso ◽  
...  

2020 ◽  
Author(s):  
Shun Wang ◽  
Hua Wang ◽  
Burkhard Koenig

Cross-coupling reactions are essential tools in modern synthesis of drugs, natural products and materials. The recent developments in photocatalytic radical generation have improved and expanded the classic metal-catalyzed cross coupling reactions even further. However, for sp<sup>2</sup> cross coupling reactions aryl halides or related active leaving groups, such as triflates, are required. Substituted arenes bearing strong C-X bonds remain inert to current methods. We describe now a new thiolate photocatalysis for the activation of inert substituted arenes in ipso-borylation reactions. This catalytic system exhibits strong reducing power and allows the borylation of stable C<sub>aryl</sub>−F, C<sub>aryl</sub>−O, C<sub>aryl</sub>-N and C<sub>aryl</sub>−S bonds, which are considered as chemically stable at mild reaction conditions. Our method considerably widens the available substrate scope of aryl radical precursors and we anticipate that this report will inspire new chemistry based on inert chemical bond activation.


Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 340 ◽  
Author(s):  
Martin Vareka ◽  
Benedikt Dahms ◽  
Mario Lang ◽  
Minh Hao Hoang ◽  
Melanie Trobe ◽  
...  

Teraryl-based alpha-helix mimetics have resulted in efficient inhibitors of protein-protein interactions (PPIs). Extending the concept to even longer oligoarene systems would allow for the mimicking of even larger interaction sites. We present a highly efficient synthetic modular access to quateraryl alpha-helix mimetics, in which, at first, two phenols undergo electrooxidative dehydrogenative cross-coupling. The resulting 4,4′-biphenol is then activated by conversion to nonaflates, which serve as leaving groups for iterative Pd-catalyzed Suzuki-cross-coupling reactions with suitably substituted pyridine boronic acids. This work, for the first time, demonstrates the synthetic efficiency of using both electroorganic as well as transition-metal catalyzed cross-coupling in the assembly of oligoarene structures.


Sign in / Sign up

Export Citation Format

Share Document