catalytic activation
Recently Published Documents


TOTAL DOCUMENTS

527
(FIVE YEARS 112)

H-INDEX

59
(FIVE YEARS 9)

2022 ◽  
Vol 3 ◽  
Author(s):  
Riccardo Balzarotti ◽  
Matteo Ambrosetti ◽  
Alessandra Beretta ◽  
Gianpiero Groppi ◽  
Enrico Tronconi

Structured catalysts are strong candidates for the intensification of non-adiabatic gas-solid catalytic processes thanks to their superior heat and mass transfer properties combined with low pressure drops. In the past two decades, different types of substrates have been proposed, including honeycomb monoliths, open-cell foams and, more recently, periodic open cellular structures produced by additive manufacturing methods. Among others, thermally conductive metallic cellular substrates have been extensively tested in heat-transfer limited exo- or endo-thermic processes in tubular reactors, demonstrating significant potential for process intensification. The catalytic activation of these geometries is critical: on one hand, these structures can be washcoated with a thin layer of catalytic active phase, but the resulting catalyst inventory is limited. More recently, an alternative approach has been proposed, which relies on packing the cavities of the metallic matrix with catalyst pellets. In this paper, an up-to-date overview of the aforementioned topics will be provided. After a brief introduction concerning the concept of structured catalysts based on highly conductive supports, specific attention will be devoted to the most recent advances in their manufacturing and in their catalytic activation. Finally, the application to the methane steam reforming process will be presented as a relevant case study of process intensification. The results from a comparison of three different reactor layouts (i.e. conventional packed bed, washcoated copper foams and packed copper foams) will highlight the benefits for the overall reformer performance resulting from the adoption of highly conductive structured internals.


ChemSusChem ◽  
2021 ◽  
Author(s):  
Matan M. Meirovich ◽  
Oren Bachar ◽  
Ramesh Nandi ◽  
Nadav Amdursky ◽  
Omer Yehezkeli

Author(s):  
Runmian Ming ◽  
Cailing Zhang ◽  
Liangbo Xie ◽  
Jing Chang ◽  
Yi Li

Author(s):  
Yongxin Lei ◽  
Wen Sun ◽  
Santosh K. Tiwari ◽  
Kunyapat Thummavichai ◽  
Ola Oluwafunmilola ◽  
...  

ChemPlusChem ◽  
2021 ◽  
Author(s):  
Ioannis N. Lykakis ◽  
Vassiliki Daikopoulou ◽  
Euaggelia Skliri ◽  
Eirini Koutsouroubi ◽  
Gerasimos S. Armatas

2021 ◽  
Author(s):  
Xin Yang ◽  
Limin Ma ◽  
Hongwei Shao ◽  
Xia Ling ◽  
Mengyu Yao ◽  
...  

Chemotherapies for cancer treatment usually suffer from poor targeting ability and serious side-effects. To improve the treatment efficiency and reduce side effects, photoactivatable chemotherapy has been recently proposed for precise cancer treatment with high spatiotemporal resolution. However, most photoactivatable prodrugs require decoration by stoichiometric photo-cleavable groups, which are only responsive to ultraviolet irradiation and suffer from low reaction efficiency. To tackle these challenges, we herein propose a bioorthogonal photo-catalytic activation strategy with riboflavin as the catalyst for in situ transformation of prodrug dihydrochelerythrine (DHCHE) prodrug into anti-cancer drug chelerythrine (CHE), which can efficiently kill cancer cells and inhibit in vivo tumor growth under light irradiation. Meanwhile, the photo-catalytic transformation from DHCHE into CHE was in situ monitored by green-to-red fluorescence conversion, which can be used for precise control of the therapeutic dose. The photocatalytic mechanism was also fully explored by means of density functional theory (DFT) calculations. We believe this imaging-guided bioorthogonal photo-catalytic activation strategy is promising for cancer chemotherapy in clinical applications.


2021 ◽  
Author(s):  
Xin Yang ◽  
Limin Ma ◽  
Hongwei Shao ◽  
Xia Ling ◽  
Mengyu Yao ◽  
...  

Chemotherapies for cancer treatment usually suffer from poor targeting ability and serious side-effects. To improve the treatment efficiency and reduce side effects, photoactivatable chemotherapy has been recently proposed for precise cancer treatment with high spatiotemporal resolution. However, most photoactivatable prodrugs require decoration by stoichiometric photo-cleavable groups, which are only responsive to ultraviolet irradiation and suffer from low reaction efficiency. To tackle these challenges, we herein propose a bioorthogonal photo-catalytic activation strategy with riboflavin as the catalyst for in situ transformation of prodrug dihydrochelerythrine (DHCHE) prodrug into anti-cancer drug chelerythrine (CHE), which can efficiently kill cancer cells and inhibit in vivo tumor growth under light irradiation. Meanwhile, the photo-catalytic transformation from DHCHE into CHE was in situ monitored by green-to-red fluorescence conversion, which can be used for precise control of the therapeutic dose. The photocatalytic mechanism was also fully explored by means of density functional theory (DFT) calculations. We believe this imaging-guided bioorthogonal photo-catalytic activation strategy is promising for cancer chemotherapy in clinical applications.


2021 ◽  
Author(s):  
Xin Yang ◽  
Limin Ma ◽  
Hongwei Shao ◽  
Xia Ling ◽  
Mengyu Yao ◽  
...  

Chemotherapies for cancer treatment usually suffer from poor targeting ability and serious side-effects. To improve the treatment efficiency and reduce side effects, photoactivatable chemotherapy has been recently proposed for precise cancer treatment with high spatiotemporal resolution. However, most photoactivatable prodrugs require decoration by stoichiometric photo-cleavable groups, which are only responsive to ultraviolet irradiation and suffer from low reaction efficiency. To tackle these challenges, we herein propose a bioorthogonal photo-catalytic activation strategy with riboflavin as the catalyst for in situ transformation of prodrug dihydrochelerythrine (DHCHE) prodrug into anti-cancer drug chelerythrine (CHE), which can efficiently kill cancer cells and inhibit in vivo tumor growth under light irradiation. Meanwhile, the photo-catalytic transformation from DHCHE into CHE can be in situ monitored by green-to-red fluorescence conversion, which can be used for precise control of the therapeutic dose. We believe this imaging-guided bioorthogonal photo-catalytic strategy is promising for cancer treatment in clinical applications.


Sign in / Sign up

Export Citation Format

Share Document