The Sea Level Change from the Antarctic Ice Sheet Based on GRACE

2009 ◽  
Vol 52 (5) ◽  
pp. 936-942 ◽  
Author(s):  
Dong-Chen E ◽  
Yuan-De YANG ◽  
Ding-Bo CHAO
2020 ◽  
Vol 11 (4) ◽  
pp. 953-976
Author(s):  
Jonas Van Breedam ◽  
Heiko Goelzer ◽  
Philippe Huybrechts

Abstract. The emphasis for informing policy makers on future sea-level rise has been on projections by the end of the 21st century. However, due to the long lifetime of atmospheric CO2, the thermal inertia of the climate system and the slow equilibration of the ice sheets, global sea level will continue to rise on a multi-millennial timescale even when anthropogenic CO2 emissions cease completely during the coming decades to centuries. Here we present global sea-level change projections due to the melting of land ice combined with steric sea effects during the next 10 000 years calculated in a fully interactive way with the Earth system model of intermediate complexity LOVECLIMv1.3. The greenhouse forcing is based on the Extended Concentration Pathways defined until 2300 CE with no carbon dioxide emissions thereafter, equivalent to a cumulative CO2 release of between 460 and 5300 GtC. We performed one additional experiment for the highest-forcing scenario with the inclusion of a methane emission feedback where methane is slowly released due to a strong increase in surface and oceanic temperatures. After 10 000 years, the sea-level change rate drops below 0.05 m per century and a semi-equilibrated state is reached. The Greenland ice sheet is found to nearly disappear for all forcing scenarios. The Antarctic ice sheet contributes only about 1.6 m to sea level for the lowest forcing scenario with a limited retreat of the grounding line in West Antarctica. For the higher-forcing scenarios, the marine basins of the East Antarctic Ice Sheet also become ice free, resulting in a sea-level rise of up to 27 m. The global mean sea-level change after 10 000 years ranges from 9.2 to more than 37 m. For the highest-forcing scenario, the model uncertainty does not exclude the complete melting of the Antarctic ice sheet during the next 10 000 years.


2021 ◽  
Author(s):  
Johan Nilsson ◽  
Alex Gardner ◽  
Fernando Paolo

Abstract. The largest uncertainty in future projections of sea level change comes from the uncertain response of the Antarctic Ice Sheet to the warming oceans and atmosphere. The ice sheet gains roughly 2000 km3 of ice from precipitation each year and losses a similar amount through solid ice discharge into the surrounding oceans. Numerous studies have shown that the ice sheet is currently out of long-term equilibrium, losing mass at an accelerated rate and increasing sea levels rise. Projections of sea-level change rely on accurate estimates of the contribution of land ice to the contemporary sea level budget. The longest observational record available to study the mass balance of the Earth’s ice sheets comes from satellite altimeters. This record, however, consists of multiple satellite missions with different life-spans, inconsistent measurement types (radar and laser) and of varying quality. To fully utilize these data, measurements from different missions must be cross-calibrated and integrated into a consistent record of change. Here, we present a novel approach for generating such a record. We describe in detail the advanced geophysical corrections applied and the processes needed to derive elevation change estimates. We processed the full archive record of satellite altimetry data, providing a seamless record of elevation change for the Antarctic Ice Sheet that spans the period 1985 to 2020. The data are produced and distributed as part of the NASA MEaSUREs ITS_LIVE project (Nilsson et al., 2021).


2010 ◽  
Vol 180 (2) ◽  
pp. 623-634 ◽  
Author(s):  
Natalya Gomez ◽  
Jerry X. Mitrovica ◽  
Mark E. Tamisiea ◽  
Peter U. Clark

1979 ◽  
Vol 11 (3) ◽  
pp. 279-298 ◽  
Author(s):  
James A. Clark ◽  
Craig S. Lingle

Predictions of global changes in relative sea level caused by retreat of the Antarctic Ice Sheet from its 18,000 yr B.P. maximum to its present size are calculated numerically. When combined with the global predictions of relative sea-level change resulting from retreat of the Northern Hemisphere ice sheets, the results may be compared directly to observations of sea-level change on the Antarctic continent as well as at distant localities. The comparison of predictions to the few observations of sea-level change on Antarctica supports the view that the Antarctic Ice Sheet was larger 18,000 years ago than at present. The contribution of the Antarctic Ice Sheet to the total eustatic sea-level rise is assumed to be 25 m (25% of the assumed total eustatic rise). If as little as 0.7 m of this 25-m rise occurred between 5000 yr B.P. and the present, few mid-oceanic islands would emerge. If the Antarctic Ice Sheet attained its present dimensions by 6000 yr B.P., however, and if the volume of the ocean has remained constant for the past 5000 years, numerous islands throughout the Southern Hemisphere would emerge. It is suggested that a thorough study of Pacific islands, believed by some to have slightly emerged shorelines of Holocene age, would yield useful information about ocean volume changes during the past 5000 years, and hence on the glacial history of the Antarctic Ice Sheet.


1992 ◽  
Vol 338 (1285) ◽  
pp. 235-242 ◽  

The prediction of short-term (100 year) changes in the mass balance of ice sheets and longer-term (1000 years) variations in their ice volumes is important for a range of climatic and environmental models. The Antarctic ice sheet contains between 24 M km 3 and 29 M km 3 of ice, equivalent to a eustatic sea level change of between 60m and 72m. The annual surface accumulation is estimated to be of the order of 2200 Gtonnes, equivalent to a sea level change of 6 mm a -1 . Analysis of the present-day accumulation regime of Antarctica indicates that about 25% ( ca. 500 Gt a -1 ) of snowfall occurs in the Antarctic Peninsula region with an area of only 6.8% of the continent. To date most models have focused upon solving predictive algorithms for the climate-sensitivity of the ice sheet, and assume: (i) surface mass balance is equivalent to accumulation (i.e. no melting, evaporation or deflation); (ii) percentage change in accumulation is proportional to change in saturation mixing ratio above the surface inversion layer; and (iii) there is a linear relation between mean annual surface air tem perature and saturation mixing ratio. For the A ntarctic Peninsula with mountainous terrain containing ice caps, outlet glaciers, valley glaciers and ice shelves, where there can be significant ablation at low levels and distinct climatic regimes, models of the climate response must be more complex. In addition, owing to the high accumulation and flow rates, even short- to medium -term predictions must take account of ice dynamics. Relationships are derived for the mass balance sensitivity and, using a model developed by Hindmarsh, the transient effects of ice dynamics are estimated. It is suggested that for a 2°C rise in mean annual surface tem perature over 40 years, ablation in the A ntarctic Peninsula region would contribute at least 1.0 mm to sea level rise, offsetting the fall of 0.5 mm contributed by increased accum ulation.


2012 ◽  
Author(s):  
T James ◽  
K Simon ◽  
A Darlington

2022 ◽  
pp. 689-768
Author(s):  
Florence Colleoni ◽  
Laura De Santis ◽  
Tim R. Naish ◽  
Robert M. DeConto ◽  
Carlota Escutia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document