ice sheet
Recently Published Documents


TOTAL DOCUMENTS

8255
(FIVE YEARS 1945)

H-INDEX

164
(FIVE YEARS 18)

2022 ◽  
Vol 120 ◽  
pp. 103024
Author(s):  
Kangjian He ◽  
Baoyu Ni ◽  
Xuesong Xu ◽  
Hongyu Wei ◽  
Yanzhuo Xue

2022 ◽  
Vol 277 ◽  
pp. 107346
Author(s):  
Matthias Troch ◽  
Sebastien Bertrand ◽  
Carina B. Lange ◽  
Paola Cárdenas ◽  
Helge Arz ◽  
...  

2022 ◽  
Vol 277 ◽  
pp. 107299
Author(s):  
Shulan Ge ◽  
Zhihua Chen ◽  
Qingsong Liu ◽  
Li Wu ◽  
Yi Zhong ◽  
...  

2022 ◽  
Vol 277 ◽  
pp. 107369
Author(s):  
Alberto V. Reyes ◽  
Anders E. Carlson ◽  
Glenn A. Milne ◽  
Lev Tarasov ◽  
Jesse R. Reimink ◽  
...  

2022 ◽  
Vol 14 (2) ◽  
pp. 399
Author(s):  
Xueyuan Tang ◽  
Sheng Dong ◽  
Kun Luo ◽  
Jingxue Guo ◽  
Lin Li ◽  
...  

The airborne ice-penetrating radar (IPR) is an effective method used for ice sheet exploration and is widely applied for detecting the internal structures of ice sheets and for understanding the mechanism of ice flow and the characteristics of the bottom of ice sheets. However, because of the ambient influence and the limitations of the instruments, IPR data are frequently overlaid with noise and interference, which further impedes the extraction of layer features and the interpretation of the physical characteristics of the ice sheet. In this paper, we first applied conventional filtering methods to remove the feature noise and interference in IPR data. Furthermore, machine learning methods were introduced in IPR data processing for noise removal and feature extraction. Inspired by a comparison of the filtering methods and machine learning methods, we propose a fusion method combining both filtering methods and machine-learning-based methods to optimize the feature extraction in IPR data. Field data tests indicated that, under different conditions of IPR data, the application of different methods and strategies can improve the layer feature extraction.


2022 ◽  
Vol 14 (2) ◽  
pp. 391
Author(s):  
Derui Xu ◽  
Xueyuan Tang ◽  
Shuhu Yang ◽  
Yun Zhang ◽  
Lijuan Wang ◽  
...  

Due to rapid global warming, the relationship between the mass loss of the Antarctic ice sheet and rising sea levels are attracting widespread attention. The Lambert–Amery glacial system is the largest drainage system in East Antarctica, and its mass balance has an important influence on the stability of the Antarctic ice sheet. In this paper, the recent ice flux in the Lambert Glacier of the Lambert–Amery system was systematically analyzed based on recently updated remote sensing data. According to Landsat-8 ice velocity data from 2018 to April 2019 and the updated Bedmachine v2 ice thickness dataset in 2021, the contribution of ice flux approximately 140 km downstream from Dome A in the Lambert Glacier area to downstream from the glacier is 8.5 ± 1.9, and the ice flux in the middle of the convergence region is 18.9 ± 2.9. The ice mass input into the Amery ice shelf through the grounding line of the whole glacier is 19.9 ± 1.3. The ice flux output from the mainstream area of the grounding line is 19.3 ± 1.0. Using the annual SMB data of the regional atmospheric climate model (RACMO v2.3) as the quality input, the mass balance of the upper, middle, and lower reaches of the Lambert Glacier was analyzed. The results show that recent positive accumulation appears in the middle region of the glacier (about 74–78°S, 67–85°E) and the net accumulation of the whole glacier is 2.4 ± 3.5. Although the mass balance of the Lambert Glacier continues to show a positive accumulation, and the positive value in the region is decreasing compared with values obtained in early 2000.


2022 ◽  
Author(s):  
Christian Jørgensen ◽  
Jens Søndergaard ◽  
Martin Larsen ◽  
Kristian Kjeldsen ◽  
Diogo Rosa ◽  
...  

In the current Matters Arising we present results from verifying control measurements of dissolved mercury (Hg) in glacial meltwater from the Greenland Ice Sheet (GrIS), which significantly challenges the conclusions of the recent publication by Hawkings et al. (2021). By direct measurements of meltwater in the same glacial catchment area, we demonstrate that the input Hg concentration for the regional upscaling in Hawkings et al (2021) is likely vastly over-estimated with major implications for the validity of the asserted extreme yield of Hg from the GrIS. In addition, we present a plausible explanation for the high Hg concentration values in the study, namely hitherto unidentified cross-contamination of water samples by mercury chloride (HgCl2), which was present and used for other purposes during field work. Together, the result of our control study potentially invalidates the suggested implications of geologically sourced Hg under the southwestern margin of the GrIS on the Arctic ecosystem in both current and future climate conditions.


2022 ◽  
Vol 16 (1) ◽  
pp. 103-125
Author(s):  
Julie Z. Miller ◽  
Riley Culberg ◽  
David G. Long ◽  
Christopher A. Shuman ◽  
Dustin M. Schroeder ◽  
...  

Abstract. Perennial firn aquifers are subsurface meltwater reservoirs consisting of a meters-thick water-saturated firn layer that can form on spatial scales as large as tens of kilometers. They have been observed within the percolation facies of glaciated regions experiencing intense seasonal surface melting and high snow accumulation. Widespread perennial firn aquifers have been identified within the Greenland Ice Sheet (GrIS) via field expeditions, airborne ice-penetrating radar surveys, and satellite microwave sensors. In contrast, ice slabs are nearly continuous ice layers that can also form on spatial scales as large as tens of kilometers as a result of surface and subsurface water-saturated snow and firn layers sequentially refreezing following multiple melting seasons. They have been observed within the percolation facies of glaciated regions experiencing intense seasonal surface melting but in areas where snow accumulation is at least 25 % lower as compared to perennial firn aquifer areas. Widespread ice slabs have recently been identified within the GrIS via field expeditions and airborne ice-penetrating radar surveys, specifically in areas where perennial firn aquifers typically do not form. However, ice slabs have yet to be identified from space. Together, these two ice sheet features represent distinct, but related, sub-facies within the broader percolation facies of the GrIS that can be defined primarily by differences in snow accumulation, which influences the englacial hydrology and thermal characteristics of firn layers at depth. Here, for the first time, we use enhanced-resolution vertically polarized L-band brightness temperature (TVB) imagery (2015–2019) generated using observations collected over the GrIS by NASA's Soil Moisture Active Passive (SMAP) satellite to map perennial firn aquifer and ice slab areas together as a continuous englacial hydrological system. We use an empirical algorithm previously developed to map the extent of Greenland's perennial firn aquifers via fitting exponentially decreasing temporal L-band signatures to a set of sigmoidal curves. This algorithm is recalibrated to also map the extent of ice slab areas using airborne ice-penetrating radar surveys collected by NASA's Operation IceBridge (OIB) campaigns (2010–2017). Our SMAP-derived maps show that between 2015 and 2019, perennial firn aquifer areas extended over 64 000 km2, and ice slab areas extended over 76 000 km2. Combined together, these sub-facies are the equivalent of 24 % of the percolation facies of the GrIS. As Greenland's climate continues to warm, seasonal surface melting will increase in extent, intensity, and duration. Quantifying the possible rapid expansion of these sub-facies using satellite L-band microwave radiometry has significant implications for understanding ice-sheet-wide variability in englacial hydrology that may drive meltwater-induced hydrofracturing and accelerated ice flow as well as high-elevation meltwater runoff that can impact the mass balance and stability of the GrIS.


2022 ◽  
Author(s):  
Mimmi Oksman ◽  
Anna Bang Kvorning ◽  
Signe Hillerup Larsen ◽  
Kristian Kjellerup Kjeldsen ◽  
Kenneth David Mankoff ◽  
...  

Abstract. Climate warming and the resulting acceleration of freshwater discharge from the Greenland Ice Sheet are impacting Arctic marine coastal ecosystems, with implications for their biological productivity. To accurately project the future of coastal ecosystems, and place recent trends into perspective, paleo-records are essential. Here, we present late 19th century to present runoff estimates for a large sub-Arctic fjord system (Nuup Kangerlua, southwest Greenland) influenced by both marine- and land-terminating glaciers. We followed a multiproxy approach to reconstruct spatial and temporal trends in primary production from four sediment cores, including diatom fluxes and assemblage composition changes, biogeochemical and sedimentological proxies (total organic carbon, nitrogen, C / N-ratio, biogenic silica, δ13C, δ15N, grain size distribution). We show that an abrupt increase in freshwater runoff in the mid-1990’s is reflected by a 3-fold increase in biogenic silica fluxes in the glacier-proximal area of the fjord. In addition to increased productivity, freshwater runoff modulates the diatom assemblages and drives the dynamics and magnitude of the diatom spring bloom. Our records indicate that marine productivity is higher today than it has been at any point since the late 19th century and suggest that increased mass loss of the Greenland Ice Sheet is likely to continue promoting high productivity levels at sites proximal to marine-terminating glaciers. We highlight the importance of paleo-records in offering a unique temporal perspective on ice-ocean-ecosystem responses to climate forcing beyond existing remote sensing or monitoring time-series.


Sign in / Sign up

Export Citation Format

Share Document