Structure of the set of stationary solutions of the navier-stokes equations

1977 ◽  
Vol 30 (2) ◽  
pp. 149-164 ◽  
Author(s):  
C. Foias ◽  
R. Temam
2021 ◽  
Vol 2090 (1) ◽  
pp. 012046
Author(s):  
Nikolay M. Evstigneev

Abstract The extension of the classical A.N. Kolmogorov’s flow problem for the stationary 3D Navier-Stokes equations on a stretched torus for velocity vector function is considered. A spectral Fourier method with the Leray projection is used to solve the problem numerically. The resulting system of nonlinear equations is used to perform numerical bifurcation analysis. The problem is analyzed by constructing solution curves in the parameter-phase space using previously developed deflated pseudo arc-length continuation method. Disconnected solutions from the main solution branch are found. These results are preliminary and shall be generalized elsewhere.


2019 ◽  
Vol 31 (07) ◽  
pp. 1950023 ◽  
Author(s):  
Hui Liu ◽  
Lin Lin ◽  
Chengfeng Sun ◽  
Qingkun Xiao

The stochastic 3D Navier–Stokes equation with damping driven by a multiplicative noise is considered in this paper. The stability of weak solutions to the stochastic 3D Navier–Stokes equations with damping is proved for any [Formula: see text] with any [Formula: see text] and [Formula: see text] as [Formula: see text]. The weak solutions converge exponentially in the mean square and almost surely exponentially to the stationary solutions are proved for any [Formula: see text] with any [Formula: see text] and [Formula: see text] as [Formula: see text]. The stabilization of these equations is obtained for any [Formula: see text] with any [Formula: see text] and [Formula: see text] as [Formula: see text].


Author(s):  
Yasunori Maekawa

The flow past an obstacle is a fundamental object in fluid mechanics. In 1967 Finn and Smith proved the unique existence of stationary solutions, called the physically reasonable solutions, to the Navier–Stokes equations in a two-dimensional exterior domain modeling this type of flows when the Reynolds number is sufficiently small. The asymptotic behavior of their solution at spatial infinity has been studied in detail and well understood by now, while its stability has remained open due to the difficulty specific to the two-dimensionality. In this paper, we prove that the physically reasonable solutions constructed by Finn and Smith are asymptotically stable with respect to small and well-localized initial perturbations.


Sign in / Sign up

Export Citation Format

Share Document