Journal of the Institute of Mathematics of Jussieu
Latest Publications


TOTAL DOCUMENTS

766
(FIVE YEARS 211)

H-INDEX

23
(FIVE YEARS 2)

Published By Cambridge University Press

1475-3030, 1474-7480

Author(s):  
Jesús Castro-Infantes ◽  
José M. Manzano

Abstract For each $k\geq 3$ , we construct a $1$ -parameter family of complete properly Alexandrov-embedded minimal surfaces in the Riemannian product space $\mathbb {H}^2\times \mathbb {R}$ with genus $1$ and k embedded ends asymptotic to vertical planes. We also obtain complete minimal surfaces with genus $1$ and $2k$ ends in the quotient of $\mathbb {H}^2\times \mathbb {R}$ by an arbitrary vertical translation. They all have dihedral symmetry with respect to k vertical planes, as well as finite total curvature $-4k\pi $ . Finally, we provide examples of complete properly Alexandrov-embedded minimal surfaces with finite total curvature with genus $1$ in quotients of $\mathbb {H}^2\times \mathbb {R}$ by the action of a hyperbolic or parabolic translation.


Author(s):  
Keiho Matsumoto

Abstract In this article, we study a Gysin triangle in the category of motives with modulus (Theorem 1.2). We can understand this Gysin triangle as a motivic lift of the Gysin triangle of log-crystalline cohomology due to Nakkajima and Shiho. After that we compare motives with modulus and Voevodsky motives (Corollary 1.6). The corollary implies that an object in $\operatorname {\mathbf {MDM}^{\operatorname {eff}}}$ decomposes into a p-torsion part and a Voevodsky motive part. We can understand the corollary as a motivic analogue of the relationship between rigid cohomology and log-crystalline cohomology.


Author(s):  
Sylvain Brochard ◽  
Srikanth B. Iyengar ◽  
Chandrashekhar B. Khare

Abstract It is proved that if $\varphi \colon A\to B$ is a local homomorphism of commutative noetherian local rings, a nonzero finitely generated B-module N whose flat dimension over A is at most $\operatorname {edim} A - \operatorname {edim} B$ is free over B and $\varphi $ is a special type of complete intersection. This result is motivated by a ‘patching method’ developed by Taylor and Wiles and a conjecture of de Smit, proved by the first author, dealing with the special case when N is flat over A.


Author(s):  
Farrell Brumley ◽  
Jasmin Matz

Abstract We study the limiting behavior of Maass forms on sequences of large-volume compact quotients of $\operatorname {SL}_d({\mathbb R})/\textrm {SO}(d)$ , $d\ge 3$ , whose spectral parameter stays in a fixed window. We prove a form of quantum ergodicity in this level aspect which extends results of Le Masson and Sahlsten to the higher rank case.


Author(s):  
RIZWANUR KHAN ◽  
MATTHEW P. YOUNG

Abstract We establish sharp bounds for the second moment of symmetric-square L-functions attached to Hecke Maass cusp forms $u_j$ with spectral parameter $t_j$ , where the second moment is a sum over $t_j$ in a short interval. At the central point $s=1/2$ of the L-function, our interval is smaller than previous known results. More specifically, for $\left \lvert t_j\right \rvert $ of size T, our interval is of size $T^{1/5}$ , whereas the previous best was $T^{1/3}$ , from work of Lam. A little higher up on the critical line, our second moment yields a subconvexity bound for the symmetric-square L-function. More specifically, we get subconvexity at $s=1/2+it$ provided $\left \lvert t_j\right \rvert ^{6/7+\delta }\le \lvert t\rvert \le (2-\delta )\left \lvert t_j\right \rvert $ for any fixed $\delta>0$ . Since $\lvert t\rvert $ can be taken significantly smaller than $\left \lvert t_j\right \rvert $ , this may be viewed as an approximation to the notorious subconvexity problem for the symmetric-square L-function in the spectral aspect at $s=1/2$ .


Author(s):  
Yuanqing Cai

Abstract We explain how to develop the twisted doubling integrals for Brylinski–Deligne extensions of connected classical groups. This gives a family of global integrals which represent Euler products for this class of nonlinear extensions.


Author(s):  
Fred Diamond

Abstract We carry out a thorough study of weight-shifting operators on Hilbert modular forms in characteristic p, generalising the author’s prior work with Sasaki to the case where p is ramified in the totally real field. In particular, we use the partial Hasse invariants and Kodaira–Spencer filtrations defined by Reduzzi and Xiao to improve on Andreatta and Goren’s construction of partial $\Theta $ -operators, obtaining ones whose effect on weights is optimal from the point of view of geometric Serre weight conjectures. Furthermore, we describe the kernels of partial $\Theta $ -operators in terms of images of geometrically constructed partial Frobenius operators. Finally, we apply our results to prove a partial positivity result for minimal weights of mod p Hilbert modular forms.


Author(s):  
Jesse Jääsaari ◽  
Stephen Lester ◽  
Abhishek Saha

Abstract Let F be a Siegel cusp form of degree $2$ , even weight $k \ge 2$ , and odd square-free level N. We undertake a detailed study of the analytic properties of Fourier coefficients $a(F,S)$ of F at fundamental matrices S (i.e., with $-4\det (S)$ equal to a fundamental discriminant). We prove that as S varies along the equivalence classes of fundamental matrices with $\det (S) \asymp X$ , the sequence $a(F,S)$ has at least $X^{1-\varepsilon }$ sign changes and takes at least $X^{1-\varepsilon }$ ‘large values’. Furthermore, assuming the generalized Riemann hypothesis as well as the refined Gan–Gross–Prasad conjecture, we prove the bound $\lvert a(F,S)\rvert \ll _{F, \varepsilon } \frac {\det (S)^{\frac {k}2 - \frac {1}{2}}}{ \left (\log \lvert \det (S)\rvert \right )^{\frac 18 - \varepsilon }}$ for fundamental matrices S.


Author(s):  
Qingyuan Jiang

Abstract In this paper, we prove a decomposition result for the Chow groups of projectivizations of coherent sheaves of homological dimension $\le 1$ . In this process, we establish the decomposition of Chow groups for the cases of the Cayley trick and standard flips. Moreover, we apply these results to study the Chow groups of symmetric powers of curves, nested Hilbert schemes of surfaces, and the varieties resolving Voisin maps for cubic fourfolds.


Author(s):  
DAVID GEPNER ◽  
JEREMIAH HELLER

Abstract We establish, in the setting of equivariant motivic homotopy theory for a finite group, a version of tom Dieck’s splitting theorem for the fixed points of a suspension spectrum. Along the way we establish structural results and constructions for equivariant motivic homotopy theory of independent interest. This includes geometric fixed-point functors and the motivic Adams isomorphism.


Sign in / Sign up

Export Citation Format

Share Document