Precursor B cells of mouse bone marrow express two different complexes with the surrogate light chain on the surface

1995 ◽  
Vol 25 (2) ◽  
pp. 446-450 ◽  
Author(s):  
Thomas H. Winkler ◽  
Antonius Rolink ◽  
Fritz Melchers ◽  
Hajime Karasuyama
Cell ◽  
1994 ◽  
Vol 77 (1) ◽  
pp. 133-143 ◽  
Author(s):  
Hajime Karasuyama ◽  
Antonius Rolink ◽  
Yoichi Shinkal ◽  
Faith Young ◽  
Frederick W. Alt ◽  
...  

Blood ◽  
1995 ◽  
Vol 85 (8) ◽  
pp. 2045-2051 ◽  
Author(s):  
TH Winkler ◽  
F Melchers ◽  
AG Rolink

Clones and lines of precursor (pre) B cells can be established by limiting dilutions of unseparated cell suspensions of fetal liver or bone marrow on stromal cells in the presence of interleukin (IL)-7. When IL-3 is used instead of IL-7, cultures are regularly overgrown by different precursor cells of the myeloid lineage, as well as by adherent cells that inhibit pre-B-cell expansion. However, in the presence of either IL-7 or IL-3, clones of pre-B cells can be established on stroma cells at frequencies near one in one when the cultures are initiated with cell sorter purified CD45RO (B220)+/c-kit+ fetal liver or bone marrow derived pre-B cells. Clones grown on stromal cells in the presence of IL-7 can be regrown in IL-3, and vice versa. Pre-B cells that proliferate on stromal cells in the presence of IL-7 or IL-3 have the same phenotype, ie, are B220+ c-kit+, CD43+, and surrogate light chain+. Removal of the growth factors (IL-7, respectively IL-3) from the cultures results in differentiation to surface immunoglobulin (slg) positive, c-kit-, CD43-, surrogate light chain-B cells, a fraction of which is lipopolysaccharide (LPS) responsive as shown by IgM secretion. These results show that IL-7 and IL-3 stimulate largely overlapping populations of precursor B cells from bone marrow to proliferate for long periods of time in the presence of stromal cells. Thus, IL-7 and IL-3 are alternative growth factors for the same pre-BI cell.


1995 ◽  
Vol 25 (11) ◽  
pp. 3108-3114 ◽  
Author(s):  
Paolo Ghia ◽  
Alois Gratwohl ◽  
Erich Signer ◽  
Thomas H. Winkler ◽  
Fritz Melchers ◽  
...  

1989 ◽  
Vol 9 (9) ◽  
pp. 3973-3981 ◽  
Author(s):  
G V Borzillo ◽  
C J Sherr

Murine long-term bone marrow cultures that support B-lymphoid-cell development were infected with a helper-free retrovirus containing the v-fms oncogene. Infection of B-lymphoid cultures resulted in the rapid clonal outgrowth of early pre-B cells, which grew to high cell densities on stromal cell feeder layers, expressed v-fms-coded glycoproteins, and underwent immunoglobulin heavy-chain gene rearrangements. Late-passage cultures gave rise to factor-independent variants that proliferated in the absence of feeder layers, developed resistance to hydrocortisone, and became tumorigenic in syngeneic mice. The v-fms oncogene therefore recapitulates known effects of the v-abl and bcr-abl oncogenes on B-lineage cells. The ability of v-fms to induce transformation of early pre-B cells in vitro underscores the capacity of oncogenic mutants of the colony-stimulating factor-1 receptor to function outside the mononuclear phagocyte lineage.


Leukemia ◽  
2000 ◽  
Vol 14 (4) ◽  
pp. 688-695 ◽  
Author(s):  
EG van Lochem ◽  
YM Wiegers ◽  
R van den Beemd ◽  
K Hählen ◽  
JJM van Dongen ◽  
...  

1998 ◽  
Vol 187 (8) ◽  
pp. 1169-1178 ◽  
Author(s):  
Christophe Arpin ◽  
Odette de Bouteiller ◽  
Diane Razanajaona ◽  
Isabelle Fugier-Vivier ◽  
Francine Brière ◽  
...  

Human myeloma are incurable hematologic cancers of immunoglobulin-secreting plasma cells in bone marrow. Although malignant plasma cells can be almost eradicated from the patient's bone marrow by chemotherapy, drug-resistant myeloma precursor cells persist in an apparently cryptic compartment. Controversy exists as to whether myeloma precursor cells are hematopoietic stem cells, pre–B cells, germinal center (GC) B cells, circulating memory cells, or plasma blasts. This situation reflects what has been a general problem in cancer research for years: how to compare a tumor with its normal counterpart. Although several studies have demonstrated somatically mutated immunoglobulin variable region genes in multiple myeloma, it is unclear if myeloma cells are derived from GCs or post-GC memory B cells. Immunoglobulin (Ig)D-secreting myeloma have two unique immunoglobulin features, including a biased λ light chain expression and a Cμ–Cδ isotype switch. Using surface markers, we have previously isolated a population of surface IgM−IgD+CD38+ GC B cells that carry the most impressive somatic mutation in their IgV genes. Here we show that this population of GC B cells displays the two molecular features of IgD-secreting myeloma cells: a biased λ light chain expression and a Cμ–Cδ isotype switch. The demonstration of these peculiar GC B cells to differentiate into IgD-secreting plasma cells but not memory B cells both in vivo and in vitro suggests that IgD-secreting plasma and myeloma cells are derived from GCs.


1989 ◽  
Vol 9 (9) ◽  
pp. 3973-3981
Author(s):  
G V Borzillo ◽  
C J Sherr

Murine long-term bone marrow cultures that support B-lymphoid-cell development were infected with a helper-free retrovirus containing the v-fms oncogene. Infection of B-lymphoid cultures resulted in the rapid clonal outgrowth of early pre-B cells, which grew to high cell densities on stromal cell feeder layers, expressed v-fms-coded glycoproteins, and underwent immunoglobulin heavy-chain gene rearrangements. Late-passage cultures gave rise to factor-independent variants that proliferated in the absence of feeder layers, developed resistance to hydrocortisone, and became tumorigenic in syngeneic mice. The v-fms oncogene therefore recapitulates known effects of the v-abl and bcr-abl oncogenes on B-lineage cells. The ability of v-fms to induce transformation of early pre-B cells in vitro underscores the capacity of oncogenic mutants of the colony-stimulating factor-1 receptor to function outside the mononuclear phagocyte lineage.


1989 ◽  
Vol 1 (1) ◽  
pp. 27-35 ◽  
Author(s):  
R D Sanderson ◽  
P Lalor ◽  
M Bernfield

Lymphopoietic cells require interactions with bone marrow stroma for normal maturation and show changes in adhesion to matrix during their differentiation. Syndecan, a heparan sulfate-rich integral membrane proteoglycan, functions as a matrix receptor by binding cells to interstitial collagens, fibronectin, and thrombospondin. Therefore, we asked whether syndecan was present on the surface of lymphopoietic cells. In bone marrow, we find syndecan only on precursor B cells. Expression changes with pre-B cell maturation in the marrow and with B-lymphocyte differentiation to plasma cells in interstitial matrices. Syndecan on B cell precursors is more heterogeneous and slightly larger than on plasma cells. Syndecan 1) is lost immediately before maturation and release of B lymphocytes into the circulation, 2) is absent on circulating and peripheral B lymphocytes, and 3) is reexpressed upon their differentiation into immobilized plasma cells. Thus, syndecan is expressed only when and where B lymphocytes associate with extracellular matrix. These results indicate that B cells differentiating in vivo alter their matrix receptor expression and suggest a role for syndecan in B cell stage-specific adhesion.


1996 ◽  
Vol 183 (2) ◽  
pp. 421-429 ◽  
Author(s):  
K Lassoued ◽  
H Illges ◽  
K Benlagha ◽  
M D Cooper

Biosynthesis of the immunoglobulin (Ig) receptor components and their assembly were examined in cell lines representative of early stages in human B lineage development. In pro-B cells, the nascent surrogate light chain proteins form a complex that transiently associates in the endoplasmic reticulum with a spectrum of unidentified proteins (40, 60, and 98 kD) and Bip, a heat shock protein family member. Lacking companion heavy chains, the surrogate light chains in pro-B cells do not associate with either the Ig(alpha) or Ig(beta) signal transduction units, undergo rapid degradation, and fail to reach the pro-B cell surface. In pre-B cells, by contrast, a significant portion of the surrogate light chain proteins associate with mu heavy chains, Ig(alpha), and Ig(beta) to form a stable receptor complex with a relatively long half-life. Early in this assembly process, Bip/GRP78, calnexin, GRP94, and a protein of approximately 17 kD differentially bind to the nascent mu heavy chains. The 17-kD intermediate is gradually replaced by the surrogate light chain protein complex, and the Ig(alpha) and Ig(beta) chains bind progressively to the mu heavy chains during the complex and relatively inefficient process of pre-B receptor assembly. The results suggest that, in humans, heavy chain association is essential for surrogate light chain survival and transport to the cell surface as an integral receptor component.


Sign in / Sign up

Export Citation Format

Share Document