Journal of Experimental Medicine
Latest Publications


TOTAL DOCUMENTS

25064
(FIVE YEARS 847)

H-INDEX

484
(FIVE YEARS 29)

Published By The Rockefeller University Press

1540-9538, 0022-1007

2022 ◽  
Vol 219 (2) ◽  
Author(s):  
Dimitra Kerdidani ◽  
Emmanouil Aerakis ◽  
Kleio-Maria Verrou ◽  
Ilias Angelidis ◽  
Katerina Douka ◽  
...  

A key unknown of the functional space in tumor immunity is whether CD4 T cells depend on intratumoral MHCII cancer antigen recognition. MHCII-expressing, antigen-presenting cancer-associated fibroblasts (apCAFs) have been found in breast and pancreatic tumors and are considered to be immunosuppressive. This analysis shows that antigen-presenting fibroblasts are frequent in human lung non-small cell carcinomas, where they seem to actively promote rather than suppress MHCII immunity. Lung apCAFs directly activated the TCRs of effector CD4 T cells and at the same time produced C1q, which acted on T cell C1qbp to rescue them from apoptosis. Fibroblast-specific MHCII or C1q deletion impaired CD4 T cell immunity and accelerated tumor growth, while inducing C1qbp in adoptively transferred CD4 T cells expanded their numbers and reduced tumors. Collectively, we have characterized in the lungs a subset of antigen-presenting fibroblasts with tumor-suppressive properties and propose that cancer immunotherapies might be strongly dependent on in situ MHCII antigen presentation.


2022 ◽  
Vol 219 (2) ◽  
Author(s):  
Ewelina Krzywinska ◽  
Michal Sobecki ◽  
Shunmugam Nagarajan ◽  
Julian Zacharjasz ◽  
Murtaza M. Tambuwala ◽  
...  

Gut innate lymphoid cells (ILCs) show remarkable phenotypic diversity, yet microenvironmental factors that drive this plasticity are incompletely understood. The balance between NKp46+, IL-22–producing, group 3 ILCs (ILC3s) and interferon (IFN)-γ–producing group 1 ILCs (ILC1s) contributes to gut homeostasis. The gut mucosa is characterized by physiological hypoxia, and adaptation to low oxygen is mediated by hypoxia-inducible transcription factors (HIFs). However, the impact of HIFs on ILC phenotype and gut homeostasis is not well understood. Mice lacking the HIF-1α isoform in NKp46+ ILCs show a decrease in IFN-γ–expressing, T-bet+, NKp46+ ILC1s and a concomitant increase in IL-22–expressing, RORγt+, NKp46+ ILC3s in the gut mucosa. Single-cell RNA sequencing revealed HIF-1α as a driver of ILC phenotypes, where HIF-1α promotes the ILC1 phenotype by direct up-regulation of T-bet. Loss of HIF-1α in NKp46+ cells prevents ILC3-to-ILC1 conversion, increases the expression of IL-22–inducible genes, and confers protection against intestinal damage. Taken together, our results suggest that HIF-1α shapes the ILC phenotype in the gut.


2022 ◽  
Vol 219 (3) ◽  
Author(s):  
Xin Liu ◽  
Yongshan Zhao ◽  
Hai Qi

T-dependent humoral responses generate long-lived memory B cells and plasma cells (PCs) predominantly through germinal center (GC) reaction. In human and mouse, memory B cells and long-lived PCs are also generated during immune responses to T-independent antigen, including bacterial polysaccharides, although the underlying mechanism for such T-independent humoral memory is not clear. While T-independent antigen can induce GCs, they are transient and thought to be nonproductive. Unexpectedly, by genetic fate-mapping, we find that these GCs actually output memory B cells and PCs. Using a conditional BCL6 deletion approach, we show memory B cells and PCs fail to last when T-independent GCs are precluded, suggesting that the GC experience per se is important for programming longevity of T-independent memory B cells and PCs. Consistent with the fact that infants cannot mount long-lived humoral memory to T-independent antigen, B cells from young animals intrinsically fail to form T-independent GCs. Our results suggest that T-independent GCs support humoral memory, and GC induction may be key to effective vaccines with T-independent antigen.


2022 ◽  
Vol 219 (2) ◽  
Author(s):  
Elza Evren ◽  
Emma Ringqvist ◽  
Jean-Marc Doisne ◽  
Anna Thaller ◽  
Natalie Sleiers ◽  
...  

Despite their importance in lung health and disease, it remains unknown how human alveolar macrophages develop early in life. Here we define the ontogeny of human alveolar macrophages from embryonic progenitors in vivo, using a humanized mouse model expressing human cytokines (MISTRG mice). We identified alveolar macrophage progenitors in human fetal liver that expressed the GM-CSF receptor CD116 and the transcription factor MYB. Transplantation experiments in MISTRG mice established a precursor–product relationship between CD34−CD116+ fetal liver cells and human alveolar macrophages in vivo. Moreover, we discovered circulating CD116+CD64−CD115+ macrophage precursors that migrated from the liver to the lung. Similar precursors were present in human fetal lung and expressed the chemokine receptor CX3CR1. Fetal CD116+CD64− macrophage precursors had a proliferative gene signature, outcompeted adult precursors in occupying the perinatal alveolar niche, and developed into functional alveolar macrophages. The discovery of the fetal alveolar macrophage progenitor advances our understanding of human macrophage origin and ontogeny.


2022 ◽  
Vol 219 (2) ◽  
Author(s):  
Bin Zhang ◽  
Yuan Zhang ◽  
Lei Xiong ◽  
Yuzhe Li ◽  
Yunliang Zhang ◽  
...  

Inflammatory monocytes are key mediators of acute and chronic inflammation; yet, their functional diversity remains obscure. Single-cell transcriptome analyses of human inflammatory monocytes from COVID-19 and rheumatoid arthritis patients revealed a subset of cells positive for CD127, an IL-7 receptor subunit, and such positivity rendered otherwise inert monocytes responsive to IL-7. Active IL-7 signaling engaged epigenetically coupled, STAT5-coordinated transcriptional programs to restrain inflammatory gene expression, resulting in inverse correlation between CD127 expression and inflammatory phenotypes in a seemingly homogeneous monocyte population. In COVID-19 and rheumatoid arthritis, CD127 marked a subset of monocytes/macrophages that retained hypoinflammatory phenotypes within the highly inflammatory tissue environments. Furthermore, generation of an integrated expression atlas revealed unified features of human inflammatory monocytes across different diseases and different tissues, exemplified by those of the CD127high subset. Overall, we phenotypically and molecularly characterized CD127-imprinted functional heterogeneity of human inflammatory monocytes with direct relevance for inflammatory diseases.


2022 ◽  
Vol 219 (2) ◽  
Author(s):  
Ilka Wahl ◽  
Hedda Wardemann

The induction of protective humoral immune responses against sporozoite surface proteins of the human parasite Plasmodium falciparum (Pf) is a prime goal in the development of a preerythrocytic malaria vaccine. The most promising antibody target is circumsporozoite protein (CSP). Although PfCSP induces strong humoral immune responses upon vaccination, vaccine efficacy is overall limited and not durable. Here, we review recent efforts to gain a better molecular and cellular understanding of anti-PfCSP B cell responses in humans and discuss ways to overcome limitations in the induction of stable titers of high-affinity antibodies that might help to increase vaccine efficacy and promote long-lived protection.


2022 ◽  
Vol 219 (2) ◽  
Author(s):  
Chongbo Yang ◽  
Ming Lu ◽  
Wenbin Chen ◽  
Zhao He ◽  
Xu Hou ◽  
...  

2021 ◽  
Vol 219 (2) ◽  
Author(s):  
Christin Herrmann ◽  
Ken Cadwell

In this issue of JEM, Fay et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20211220) cohouse dirty pet store mice and rats with clean laboratory mice to gain insights into infection dynamics, discover new viruses, and identify relationships between viruses and the microbiome.


2021 ◽  
Vol 219 (2) ◽  
Author(s):  
Elizabeth J. Fay ◽  
Keir M. Balla ◽  
Shanley N. Roach ◽  
Frances K. Shepherd ◽  
Dira S. Putri ◽  
...  

Emerging viruses threaten global health, but few experimental models can characterize the virus and host factors necessary for within- and cross-species transmission. Here, we leverage a model whereby pet store mice or rats—which harbor natural rodent pathogens—are cohoused with laboratory mice. This “dirty” mouse model offers a platform for studying acute transmission of viruses between and within hosts via natural mechanisms. We identified numerous viruses and other microbial species that transmit to cohoused mice, including prospective new members of the Coronaviridae, Astroviridae, Picornaviridae, and Narnaviridae families, and uncovered pathogen interactions that promote or prevent virus transmission. We also evaluated transmission dynamics of murine astroviruses during transmission and spread within a new host. Finally, by cohousing our laboratory mice with the bedding of pet store rats, we identified cross-species transmission of a rat astrovirus. Overall, this model system allows for the analysis of transmission of natural rodent viruses and is a platform to further characterize barriers to zoonosis.


Sign in / Sign up

Export Citation Format

Share Document