scholarly journals Subcellular localization of (latent) transforming growth factor β and the latent TGF-β binding protein in rat hepatocytes and hepatic stellate cells

Hepatology ◽  
1998 ◽  
Vol 28 (6) ◽  
pp. 1588-1596 ◽  
Author(s):  
Sylke Roth-Eichhorn ◽  
Kitty Kühl ◽  
Axel M. Gressner
2018 ◽  
Vol 96 (8) ◽  
pp. 728-741 ◽  
Author(s):  
Sowmya Mekala ◽  
SubbaRao V. Tulimilli ◽  
Ramasatyaveni Geesala ◽  
Kanakaraju Manupati ◽  
Neha R. Dhoke ◽  
...  

Apoptotic hepatocytes release factors that activate hepatic stellate cells (HSCs), thereby inducing hepatic fibrosis. In the present study, in vivo and in vitro injury models were established using acetaminophen, ethanol, carbon tetrachloride, or thioacetamide. Histology of hepatotoxicant-induced diseased hepatic tissue correlated with differential expression of fibrosis-related genes. A marked increase in co-staining of transforming growth factor β receptor type II (TGFRIIβ) – desmin or α-smooth muscle actin – platelet-derived growth factor receptor β (PDGFRβ), markers of activated HSCs, in liver sections of these hepatotoxicant-treated mice also depicted an increase in Annexin V – cytokeratin expressing hepatocytes. To understand the molecular mechanisms of disease pathology, in vitro experiments were designed using the conditioned medium (CM) of hepatotoxicant-treated HepG2 cells supplemented to HSCs. A significant increase in HSC proliferation, migration, and expression of fibrosis-related genes and protein was observed, thereby suggesting the characteristics of an activated phenotype. Treating HepG2 cells with hepatotoxicants resulted in a significant increase in mRNA expression of platelet-derived growth factor BB (PDGF-BB) and transforming growth factor β (TGFβ). CM supplemented to HSCs resulted in increased phosphorylation of PDGFRβ and TGFRIIβ along with its downstream effectors, extracellular signal-related kinase 1/2 and focal adhesion kinase. Neutralizing antibodies against PDGF-BB and TGFβ effectively perturbed the hepatotoxicant-treated HepG2 cell CM-induced activation of HSCs. This study suggests PDGF-BB and TGFβ as potential molecular targets for developing anti-fibrotic therapeutics.


2003 ◽  
Vol 278 (13) ◽  
pp. 11721-11728 ◽  
Author(s):  
Chenghai Liu ◽  
Marianna D. A. Gaça ◽  
E. Scott Swenson ◽  
Vincent F. Vellucci ◽  
Michael Reiss ◽  
...  

2019 ◽  
Vol 97 (5) ◽  
pp. 505-512 ◽  
Author(s):  
Peiqin Wang ◽  
Shujuan Lei ◽  
Xiaohang Wang ◽  
Wenping Xu ◽  
Pingfang Hu ◽  
...  

Aberrant expression of microRNAs is associated with liver fibrogenesis. We previously found that microRNA-134 (miR-134) expression was reduced in fibrosis-based hepatocarcinogenesis induced by diethylinitrosamine. Herein we investigate the role and mechanisms of miR-134 in hepatic fibrosis. Our data show that miR-134 expression is reduced in rat hepatic fibrogenesis induced by carbontetrachloride, bile duct ligation, and dimethylnitrosamine, as well as in activated hepatic stellate cells (HSCs). Moreover, miR-134 inhibited HSC proliferation, and decreased the expression of smooth muscle actin and collagen I in HSCs, whereas the miR-134 inhibitor increased HSC activation. MiR-134 also negatively regulated transforming growth factor-β-activated kinase 1-binding protein 1 (TAB1) expression in both human and rat HSCs by directly binding to its 3′ untranslated region. Importantly, TAB1 expression was significantly elevated during liver fibrogenesis and HSC activation. Knockdown of TAB1 inhibited the proliferation and fibrogenic behavior of HSCs, and significantly reduced the effect of the miR-134 inhibitor on HSC proliferation. Collectively, these data suggest that miR-134 inhibits the activation of HSCs via directly targeting TAB1, and the restoration of miR-134 or targeting TAB1 is of clinical significance in the treatment of liver fibrosis.


Sign in / Sign up

Export Citation Format

Share Document