activated hepatic stellate cells
Recently Published Documents


TOTAL DOCUMENTS

266
(FIVE YEARS 40)

H-INDEX

34
(FIVE YEARS 6)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shou-Lun Lee ◽  
Wei-Hsiang Hsu ◽  
Chia-Ming Tu ◽  
Wen-Han Wang ◽  
Cheng-Yao Yang ◽  
...  

Background. The extract of freshwater clams has been used to protect the body against liver diseases in traditional folk medicine. This study aims at investigating the effects of freshwater clam extract on activated hepatic stellate cells (aHSCs), which are critical contributors to liver fibrosis. Methods. The aHSCs used in this study were derived from hepatic stellate cells that were isolated and purified from the livers of male Wistar rats and then transformed into the activated phenotype by culturing on uncoated plastic dishes. Freshwater clam extract (CE) was collected after the outflow from the live freshwater clams in a water bath at 100°C for 60 min. The effects of CE on aHSCs were analyzed by MTT assay, flow cytometry, Oil Red O (ORO) staining, western blot, and real-time RT-PCR. Results. The results indicated that CE suppressed the proliferation of aHSCs through G0/G1 cell cycle arrest by downregulating cyclin D1 and upregulating p27. The expression levels of a-SMA, collagen I, TGF-β, and TNF-α were inhibited in the CE-treated aHSCs. In addition, the CE treatment increased the lipid contents in aHSCs by promoting PPARγ expression. Furthermore, CE modulated the expression of ECM-related genes, i.e., by upregulating MMP-9 and downregulating TIMP-II. Conclusions. These data revealed that CE could induce the deactivation of aHSCs. We therefore suggest that CE has potential as an adjuvant therapeutic agent against hepatic fibrosis.


2021 ◽  
Vol 261 ◽  
pp. 334-342
Author(s):  
Christian Sommerhalder ◽  
Claire B. Cummins ◽  
Xiaofu Wang ◽  
Divya Ramdas ◽  
Omar Nunez Lopez ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yang Hu ◽  
Nian Fu ◽  
Li Xian Chen ◽  
Jian Hua Xiao ◽  
Xue Feng Yang

Cyclooxygenase-2 (COX-2) is an important rate-limiting enzyme in the synthesis of prostaglandins (PGs), which can be upregulated by various stimuli. COX-2 has been shown to be involved in the occurrence and development of hepatic fibrosis by regulating the proliferation and apoptosis of hepatic stellate cells (HSCs) in previous studies. The aims of the study are to study the mechanism of how COX-2 regulates the proliferation and apoptosis of HSCs and to provide new targets for the prevention and treatment of hepatic fibrosis. A short hairpin RNA targeting COX-2 was constructed, and the changes in proliferation and apoptosis of liver tissue cells and HSCs were observed, respectively. COX-2-shRNA-1 significantly suppressed the proliferation of HSCs in vivo. Moreover, knockdown of COX-2 significantly suppressed cell proliferation and accelerated cell cycle arrest and apoptosis in vitro. Among those differential genes related to cell proliferation and apoptosis, CDC27 and Sh3kbp1 were upregulated, but Plcd4 was suppressed. Mechanistically, the influence of COX-2 on HSCs partly depends on upregulating CDC27. Our results demonstrated that COX-2 regulates the proliferation and apoptosis of activated hepatic stellate cells through the CDC27 pathway. This study contributes to our understanding of the effect of COX-2 for the treatment of hepatic fibrosis.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sujuan Xi ◽  
Xiaoyan Zheng ◽  
Xiangyong Li ◽  
Yuming Jiang ◽  
Yuankai Wu ◽  
...  

Background: Activated hepatic stellate cells (aHSCs) regulate the function of immune cells during liver fibrosis. As major innate cells in the liver, macrophages have inducible plasticity. Nevertheless, the mechanisms through which aHSCs regulate macrophages' phenotype and function during liver fibrosis and cirrhosis remain unclear. In this study, we examined the immunoregulatory function of aHSCs during liver fibrosis and explored their role in regulating macrophage phenotype and function.Methods: A total of 96 patients with different stages of chronic hepatitis B-related liver fibrosis were recruited in the study. Metavir score system was used to evaluate the degree of fibrosis. The expression of hepatic CCL2 and M2 phenotype macrophage marker CD163 were detected by immunohistochemistry, and the relationship among hepatic CD163, CCL2, and fibrosis scores were also explored. In the in vitro model, the aHSCs isolated from human liver tissues and THP-1-derived M0-type macrophages (M0MΦ) were co-cultured to observe whether and how aHSCs regulate the phenotype and function of macrophages. To explore whether CCL2/CCR2 axis has a crucial role in macrophage phenotypic changes during liver fibrosis, we treated the M0MΦ with recombinant human CCL2 or its specific receptor antagonist INCB-3284. Furthermore, we used LX2 and TGF-β-activated LX2 to mimic the different activation statuses of aHSCs to further confirm our results.Results: In patients, the infiltration of M2 macrophages increased during the progression of liver fibrosis. Intriguingly, as a key molecule for aHSC chemotactic macrophage aggregation, CCL2 markedly up-regulated the expression of CD163 and CD206 on the macrophages, which was further confirmed by adding the CCR2 antagonist (INCB 3284) into the cell culture system. In addition, the TGF-β stimulated LX2 further confirmed that aHSCs up-regulate the expression of CD163 and CD206 on macrophages. LX2 stimulated with TGF-β could produce more CCL2 and up-regulate other M2 phenotype macrophage-specific markers, including IL-10, ARG-1, and CCR2 besides CD163 and CD206 at the gene level, indicating that the different activation status of aHSCs might affect the final phenotype and function of macrophages.Conclusions: The expression of the M2 macrophage marker increases during liver fibrosis progression and is associated with fibrosis severity. AHSCs can recruit macrophages through the CCL2/CCR2 pathway and induce M2 phenotypic transformation.


2020 ◽  
pp. 153537022096039
Author(s):  
Qilan Guo ◽  
Minghua Chen ◽  
Qingduo Chen ◽  
Guitao Xiao ◽  
Zhixin Chen ◽  
...  

Activated hepatic stellate cells are reported to play a significant role in liver fibrogenesis. Beside the phenotype reversion and apoptosis of activated hepatic stellate cells, the senescence of activated hepatic stellate cells limits liver fibrosis. Our previous researches have demonstrated that interleukin-10 could promote hepatic stellate cells senescence via p53 signaling pathway in vitro. However, the relationship between expression of p53 and senescence of activated hepatic stellate cells induced by interleukin-10 in fibrotic liver is unclear. The purpose of present study was to explore whether p53 plays a crucial role in the senescence of activated hepatic stellate cells and degradation of collagen mediated by interleukin-10. Hepatic fibrosis animal model was induced by carbon tetrachloride through intraperitoneal injection and transfection of interleukin-10 gene to liver was performed by hydrodynamic-based transfer system. Depletions of p53 in vivo and in vitro were carried out by adenovirus-based short hairpin RNA against p53. Regression of fibrosis was assessed by liver biopsy and collagen staining. Cellular senescence in the liver was observed by senescence-associated beta-galactosidase (SA-β-Gal) staining. Immunohistochemistry, immunofluorescence double staining, and Western blot analysis were used to evaluate the senescent cell and senescence-related protein expression. Our data showed that interleukin-10 gene treatment could lighten hepatic fibrosis induced by carbon tetrachloride and induce the aging of activated hepatic stellate cells accompanied by up-regulating the expression of aging-related proteins. We further demonstrated that depletion of p53 could abrogate up-regulation of interleukin-10 on the expression of senescence-related protein in vivo and vitro. Moreover, p53 knockout in fibrotic mice could block not only the senescence of activated hepatic stellate cells, but also the degradation of fibrosis induced by interleukin-10 gene intervention. Taken together, our results suggested that interleukin-10 gene treatment could attenuate carbon tetrachloride-induced hepatic fibrosis by inducing senescence of activated hepatic stellate cells in vivo, and this induction was closely related to p53 signaling pathway. Impact statement This work further expanded the knowledge of the molecular mechanisms underlying IL-10 anti-fibrogenic effect by exploring the function of p53 in IL-10-induced activated HSCs senescence and fibrotic degradation in vivo. Our data showed that IL-10 gene intervention could lighten hepatic fibrosis induced by CCL4 and induce the senescence of activated HSCs accompanied by up-regulating the expression of senescence-related proteins. In addition, depletion of p53 could abrogate up-regulation of IL-10 on the expression of aging-related proteins in vivo and vitro. Moreover, p53 knockout in fibrotic mice could block the senescence of activated HSCs and the degradation of fibrosis induced by IL-10 gene treatment. In summary, our results suggested that IL-10 gene intervention could attenuate CCL4-induced hepatic fibrosis by inducing senescence of activated HSCs in vivo, and this induction was closely related to p53 signaling pathway. Our study sheds important light into the anti-fibrogenic therapy of IL-10.


Sign in / Sign up

Export Citation Format

Share Document