Direct and indirect interactions in the recognition between a cross-neutralizing antibody and the four serotypes of dengue virus

2014 ◽  
Vol 27 (4) ◽  
pp. 205-214 ◽  
Author(s):  
Olesia Lisova ◽  
Laurent Belkadi ◽  
Hugues Bedouelle
2017 ◽  
Vol 25 (10) ◽  
pp. 2323-2331 ◽  
Author(s):  
Diogo M. Magnani ◽  
Michael J. Ricciardi ◽  
Varian K. Bailey ◽  
Martin J. Gutman ◽  
Núria Pedreño-Lopez ◽  
...  

Virus Genes ◽  
2017 ◽  
Vol 54 (1) ◽  
pp. 25-32 ◽  
Author(s):  
J. Asnet Mary ◽  
Akanitt Jittmittraphap ◽  
Siriporn Chattanadee ◽  
Pornsawan Leaungwutiwong ◽  
R. Shenbagarathai

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Daniela V. Andrade ◽  
Colin Warnes ◽  
Ellen Young ◽  
Leah C. Katzelnick ◽  
Angel Balmaseda ◽  
...  

Abstract The four dengue virus serotypes (DENV1-4) cause major public health problems worldwide. Highly neutralizing type-specific human monoclonal antibodies (hmAbs) target conformation-dependent epitopes on the DENV envelope protein, including 1F4, a DENV1 type-specific hmAb. Using a recombinant DENV2 virus displaying the DENV1 1F4 epitope (rDENV2/1), we measured the proportion and kinetics of DENV1 neutralizing antibodies targeting the 1F4 epitope in individuals living in Asia and the Americas where different DENV1 genotypes were circulating. Samples from 20 individuals were analyzed 3 and 18 months post-primary DENV1 infection, alongside samples from 4 individuals collected annually for four years post-primary DENV1 infection, from two studies in Nicaragua. We also analyzed convalescent post-primary DENV1 plasma samples from Sri Lankan individuals. We found that neutralizing antibodies recognizing the 1F4 epitope vary in prevalence across both populations and were detected from 20 days to four years post-infection. Additionally, both populations displayed substantial variability, with a range of high to low proportions of DENV1 type-specific neutralizing antibodies recognizing the 1F4 epitope seen across individuals. Thus, the 1F4 epitope is a major but not exclusive target of type-specific neutralizing antibodies post-primary infection with different DENV1 genotypes in Asia and Latin America, and additional epitopes likely contribute to type-specific neutralization of DENV1.


2015 ◽  
Vol 89 (12) ◽  
pp. 6494-6505 ◽  
Author(s):  
Raphaël M. Zellweger ◽  
William W. Tang ◽  
William E. Eddy ◽  
Kevin King ◽  
Marisa C. Sanchez ◽  
...  

ABSTRACTDengue virus (DENV) is a major public health threat worldwide. Infection with one of the four serotypes of DENV results in a transient period of protection against reinfection with all serotypes (cross-protection), followed by lifelong immunity to the infecting serotype. While a protective role for neutralizing antibody responses is well established, the contribution of T cells to reinfection is less clear, especially during heterotypic reinfection. This study investigates the role of T cells during homotypic and heterotypic DENV reinfection. Mice were sequentially infected with homotypic or heterotypic DENV serotypes, and T cell subsets were depleted before the second infection to assess the role of DENV-primed T cells during reinfection. Mice primed nonlethally with DENV were protected against reinfection with either a homotypic or heterotypic serotype 2 weeks later. Homotypic priming induced a robust neutralizing antibody response, whereas heterotypic priming elicited binding, but nonneutralizing antibodies. CD8+T cells were required for protection against heterotypic, but not homotypic, reinfection. These results suggest that T cells can contribute crucially to protection against heterotypic reinfection in situations where humoral responses alone may not be protective. Our findings have important implications for vaccine design, as they suggest that inducing both humoral and cellular responses during vaccination may maximize protective efficacy across all DENV serotypes.IMPORTANCEDengue virus is present in more than 120 countries in tropical and subtropical regions. Infection with dengue virus can be asymptomatic, but it can also progress into the potentially lethal severe dengue disease. There are four closely related dengue virus serotypes. Infection with one serotype results in a transient period of resistance against all serotypes (cross-protection), followed by lifelong resistance to the infecting serotype, but not the other ones. The duration and mechanisms of the transient cross-protection period remain elusive. This study investigates the contribution of cellular immunity to cross-protection using mouse models of DENV infection. Our results demonstrate that cellular immunity is crucial to mediate cross-protection against reinfection with a different serotype, but not for protection against reinfection with the same serotype. A better understanding of the mediators responsible for the cross-protection period is important for vaccine design, as an ideal vaccine against dengue virus should efficiently protect against all serotypes.


2014 ◽  
Vol 8 (10) ◽  
pp. e3230 ◽  
Author(s):  
Darunee Buddhari ◽  
Jared Aldstadt ◽  
Timothy P. Endy ◽  
Anon Srikiatkhachorn ◽  
Butsaya Thaisomboonsuk ◽  
...  

2007 ◽  
Vol 81 (23) ◽  
pp. 12766-12774 ◽  
Author(s):  
Ching-Juh Lai ◽  
Ana P. Goncalvez ◽  
Ruhe Men ◽  
Claire Wernly ◽  
Olivia Donau ◽  
...  

ABSTRACT The chimpanzee monoclonal antibody (MAb) 5H2 is specific for dengue virus type 4 (DENV-4) and neutralizes the virus at a high titer in vitro. The epitope detected by the antibody was mapped by sequencing neutralization escape variants of the virus. One variant contained a Lys174-Glu substitution and another contained a Pro176-Leu substitution in domain I of the DENV-4 envelope protein (E). These mutations reduced binding affinity for the antibody 18- to >100-fold. Humanized immunoglobulin G (IgG) 5H2, originally produced from an expression vector, has been shown to be a variant containing a nine-amino-acid deletion in the Fc region which completely ablates antibody-dependent enhancement of DENV replication in vitro. The variant MAb, termed IgG 5H2 ΔD, is particularly attractive for exploring its protective capacity in vivo. Passive transfer of IgG 5H2 ΔD at 20 μg/mouse afforded 50% protection of suckling mice against challenge with 25 50% lethal doses of mouse neurovirulent DENV-4 strain H241. Passive transfer of antibody to monkeys was conducted to demonstrate proof of concept for protection against DENV challenge. Monkeys that received 2 mg/kg of body weight of IgG 5H2 ΔD were completely protected against 100 50% monkey infectious doses (MID50) of DENV-4, as indicated by the absence of viremia and seroconversion. A DENV-4 escape mutant that contained a Lys174-Glu substitution identical to that found in vitro was isolated from monkeys challenged with 106 MID50 of DENV-4. This substitution was also present in all naturally occurring isolates belonging to DENV-4 genotype III. These studies have important implications for possible antibody-mediated prevention of DENV infection.


2018 ◽  
Author(s):  
Wen-Fan Shen ◽  
Jedhan Ucat Galula ◽  
Jyung-Hurng Liu ◽  
Mei-Ying Liao ◽  
Chang-Hao Huang ◽  
...  

AbstractDengue fever is caused by four different serotypes of dengue virus (DENV) which is the leading cause of worldwide arboviral diseases in humans. Virus-like particles (VLPs) containing flavivirus prM/E proteins have been demonstrated to be a potential vaccine candidate; however, the structure of dengue VLP is poorly understood. Herein we show for the first time that mD2VLP particles possess a T=1 icosahedral symmetry with a groove located within the E-protein dimers near the 2-fold vertices that exposed highly overlapping, cryptic neutralizing epitopes through cryo-electron microscopy reconstruction. Mice vaccinated with highly matured virus-like particles derived from DENV serotype 2 (mD2VLP) can generate higher cross reactive (CR) neutralization antibodies (NtAbs) and were protected against all 4 serotypes of DENV through clonal expansion supported by hybridoma and B-cell repertoire analysis. Our results revealed that a “epitope-resurfaced” mature-form dengue VLP has the potential to induce quaternary structure-recognizing broad CR NtAbs.


Sign in / Sign up

Export Citation Format

Share Document