Left invariant metrics and curvatures on simply connected three-dimensional Lie groups

2009 ◽  
Vol 282 (6) ◽  
pp. 868-898 ◽  
Author(s):  
Ku Yong Ha ◽  
Jong Bum Lee
Author(s):  
Jorge Lauret ◽  
Cynthia E Will

Abstract We study the natural functional $F=\frac {\operatorname {scal}^2}{|\operatorname {Ric}|^2}$ on the space of all non-flat left-invariant metrics on all solvable Lie groups of a given dimension $n$. As an application of properties of the beta operator, we obtain that solvsolitons are the only global maxima of $F$ restricted to the set of all left-invariant metrics on a given unimodular solvable Lie group, and beyond the unimodular case, we obtain the same result for almost-abelian Lie groups. Many other aspects of the behavior of $F$ are clarified.


2007 ◽  
Vol 50 (1) ◽  
pp. 24-34 ◽  
Author(s):  
Nathan Brown ◽  
Rachel Finck ◽  
Matthew Spencer ◽  
Kristopher Tapp ◽  
Zhongtao Wu

AbstractWe classify the left-invariant metrics with nonnegative sectional curvature on SO(3) and U(2).


2019 ◽  
Vol 16 (08) ◽  
pp. 1950122
Author(s):  
A. I. Breev ◽  
A. V. Shapovalov

We consider the effects of vacuum polarization and particle creation of a scalar field on Lie groups with a non-stationary bi-invariant metric of the Robertson–Walker type. The vacuum expectation values of the energy momentum tensor for a scalar field determined by the group representation are found using the noncommutative integration method for the field equations instead of separation of variables. The results obtained are illustrated by the example of the three-dimensional rotation group.


1987 ◽  
Vol 21 (3) ◽  
pp. 233-234
Author(s):  
D. V. Alekseevskii ◽  
B. A. Putko

2011 ◽  
Vol 08 (03) ◽  
pp. 501-510 ◽  
Author(s):  
HAMID REZA SALIMI MOGHADDAM

In this paper we study the geometry of simply connected two-step nilpotent Lie groups of dimension five. We give the Levi–Civita connection, curvature tensor, sectional and scalar curvatures of these spaces and show that they have constant negative scalar curvature. Also we show that the only space which admits left-invariant Randers metric of Berwald type has three-dimensional center. In this case the explicit formula for computing flag curvature is obtained and it is shown that flag curvature and sectional curvature have the same sign.


2019 ◽  
Vol 31 (6) ◽  
pp. 1567-1605 ◽  
Author(s):  
Gabriel Larotonda

AbstractWe study the geometry of Lie groups G with a continuous Finsler metric, in presence of a subgroup K such that the metric is right-invariant for the action of K. We present a systematic study of the metric and geodesic structure of homogeneous spaces M obtained by the quotient {M\simeq G/K}. Of particular interest are left-invariant metrics of G which are then bi-invariant for the action of K. We then focus on the geodesic structure of groups K that admit bi-invariant metrics, proving that one-parameter groups are short paths for those metrics, and characterizing all other short paths. We provide applications of the results obtained, in two settings: manifolds of Banach space linear operators, and groups of maps from compact manifolds.


2017 ◽  
Vol 15 (01) ◽  
pp. 1850015
Author(s):  
Farhad Asgari ◽  
Hamid Reza Salimi Moghaddam

Let [Formula: see text] be a Lie group equipped with a left invariant Randers metric of Berward type [Formula: see text], with underlying left invariant Riemannian metric [Formula: see text]. Suppose that [Formula: see text] and [Formula: see text] are lifted Randers and Riemannian metrics arising from [Formula: see text] and [Formula: see text] on the tangent Lie group [Formula: see text] by vertical and complete lifts. In this paper, we study the relations between the flag curvature of the Randers manifold [Formula: see text] and the sectional curvature of the Riemannian manifold [Formula: see text] when [Formula: see text] is of Berwald type. Then we give all simply connected three-dimensional Lie groups such that their tangent bundles admit Randers metrics of Berwarld type and their geodesics vectors.


Sign in / Sign up

Export Citation Format

Share Document