An 8 dimensional Walker manifold (M; g) is a strict walker manifold if we can choose a coordinate system fx1; x2; x3; x4; x5; x6; x7; x8g on (M,g) such that any function f on the manfold (M,g), f(x1; x2; x3; x4; x5; x6; x7; x8) = f(x5; x6; x7; x8): In this work, we dene a Non-strict eight dimensional walker manifold as the one that we can choose the coordinate system such that for any f in (M; g); f(x1; x2; x3; x4; x5; x6; x7; x8) = f(x1; x2; x3; x4): We derive cononical form of the Levi-Civita connection, curvature operator, (0; 4)-curvature tansor, the Ricci tensor, Weyl tensorand study some of the properties associated with the class of Non-strict 8 dimensionalWalker manifold. We investigate the Einstein property and establish a theorem for the metric to be locally conformally at.