A High Strength but Fast Fracture‐Self‐Healing Thermoplastic Elastomer

2021 ◽  
pp. 2100135
Author(s):  
Yu Zhang ◽  
Yongjia Yu ◽  
Xiaojuan Zhao ◽  
Xin Yang ◽  
Ran Yu ◽  
...  
2021 ◽  
Vol 9 (7) ◽  
pp. 3931-3939
Author(s):  
Shiqiang Song ◽  
Honghao Hou ◽  
Jincheng Wang ◽  
Pinhua Rao ◽  
Yong Zhang

A high-stretchability, high-strength, tear-resistant, self-healing and adhesive elastomer is prepared through a facile and effective physical blending strategy. The elastomer shows potential applications in e-skin devices.


2021 ◽  
pp. 102450
Author(s):  
Shubin Li ◽  
Xiao Wang ◽  
Jiang Zhu ◽  
Zhenyu Wang ◽  
Lu Wang

Author(s):  
Liangliang Xia ◽  
Ming Zhou ◽  
Hongjun Tu ◽  
wen Zeng ◽  
xiaoling Yang ◽  
...  

The preparation of room-temperature self-healing polymeric materials with good healing efficiency and high mechanical strength is challenging. Two processes are essential to realise the room-temperature self-healing of materials: (a) a...


2020 ◽  
Vol 8 (4) ◽  
pp. 794-802 ◽  
Author(s):  
Kun Lei ◽  
Zhao Li ◽  
Dandan Zhu ◽  
Chengyuan Sun ◽  
Yunlong Sun ◽  
...  

Polysaccharide-based hydrogels (PSBHs) have received significant attention for numerous bio-applications due to their biocompatibility and non-immunogenic performance.


2019 ◽  
Vol 4 (1) ◽  
pp. 1 ◽  
Author(s):  
Madhuparna Roy ◽  
Phong Tran ◽  
Tarik Dickens ◽  
Amanda Schrand

The demand for additively manufactured polymer composites with increased specific properties and functional microstructure has drastically increased over the past decade. The ability to manufacture complex designs that can maximize strength while reducing weight in an automated fashion has made 3D-printed composites a popular research target in the field of engineering. However, a significant amount of understanding and basic research is still necessary to decode the fundamental process mechanisms of combining enhanced functionality and additively manufactured composites. In this review, external field-assisted additive manufacturing techniques for polymer composites are discussed with respect to (1) self-assembly into complex microstructures, (2) control of fiber orientation for improved interlayer mechanical properties, and (3) incorporation of multi-functionalities such as electrical conductivity, self-healing, sensing, and other functional capabilities. A comparison between reinforcement shapes and the type of external field used to achieve mechanical property improvements in printed composites is addressed. Research has shown the use of such materials in the production of parts exhibiting high strength-to-weight ratio for use in aerospace and automotive fields, sensors for monitoring stress and conducting electricity, and the production of flexible batteries.


Sign in / Sign up

Export Citation Format

Share Document