A regularization method for the cauchy problem of the modified Helmholtz equation

2014 ◽  
Vol 38 (17) ◽  
pp. 3711-3719 ◽  
Author(s):  
Hao Cheng ◽  
Ping Zhu ◽  
Jie Gao
Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 705 ◽  
Author(s):  
Fan Yang ◽  
Ping Fan ◽  
Xiao-Xiao Li

In this paper, the Cauchy problem of the modified Helmholtz equation (CPMHE) with perturbed wave number is considered. In the sense of Hadamard, this problem is severely ill-posed. The Fourier truncation regularization method is used to solve this Cauchy problem. Meanwhile, the corresponding error estimate between the exact solution and the regularized solution is obtained. A numerical example is presented to illustrate the validity and effectiveness of our methods.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Hao Cheng ◽  
Ping Zhu ◽  
Jie Gao

A regularization method for solving the Cauchy problem of the Helmholtz equation is proposed. Thea priorianda posteriorirules for choosing regularization parameters with corresponding error estimates between the exact solution and its approximation are also given. The numerical example shows the effectiveness of this method.


Sign in / Sign up

Export Citation Format

Share Document