scholarly journals Modified Tikhonov regularization method for the Cauchy problem of the Helmholtz equation

2009 ◽  
Vol 224 (1) ◽  
pp. 39-53 ◽  
Author(s):  
H.H. Qin ◽  
T. Wei ◽  
R. Shi
2020 ◽  
Vol 18 (1) ◽  
pp. 1685-1697
Author(s):  
Zhenyu Zhao ◽  
Lei You ◽  
Zehong Meng

Abstract In this paper, a Cauchy problem for the Laplace equation is considered. We develop a modified Tikhonov regularization method based on Hermite expansion to deal with the ill posed-ness of the problem. The regularization parameter is determined by a discrepancy principle. For various smoothness conditions, the solution process of the method is uniform and the convergence rate can be obtained self-adaptively. Numerical tests are also carried out to verify the effectiveness of the method.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Hao Cheng ◽  
Ping Zhu ◽  
Jie Gao

A regularization method for solving the Cauchy problem of the Helmholtz equation is proposed. Thea priorianda posteriorirules for choosing regularization parameters with corresponding error estimates between the exact solution and its approximation are also given. The numerical example shows the effectiveness of this method.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Fan Yang ◽  
HengZhen Guo ◽  
XiaoXiao Li

This paper discusses the problem of determining an unknown source which depends only on one variable for the modified Helmholtz equation. This problem is ill-posed in the sense that the solution (if it exists) does not depend continuously on the data. The regularization solution is obtained by the simplified Tikhonov regularization method. Convergence estimate is presented between the exact solution and the regularization solution. Moreover, numerical results are presented to illustrate the accuracy and efficiency of this method.


Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 705 ◽  
Author(s):  
Fan Yang ◽  
Ping Fan ◽  
Xiao-Xiao Li

In this paper, the Cauchy problem of the modified Helmholtz equation (CPMHE) with perturbed wave number is considered. In the sense of Hadamard, this problem is severely ill-posed. The Fourier truncation regularization method is used to solve this Cauchy problem. Meanwhile, the corresponding error estimate between the exact solution and the regularized solution is obtained. A numerical example is presented to illustrate the validity and effectiveness of our methods.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Songshu Liu ◽  
Lixin Feng

In this paper we investigate a Cauchy problem of two-dimensional (2D) heat conduction equation, which determines the internal surface temperature distribution from measured data at the fixed location. In general, this problem is ill-posed in the sense of Hadamard. We propose a revised Tikhonov regularization method to deal with this ill-posed problem and obtain the convergence estimate between the approximate solution and the exact one by choosing a suitable regularization parameter. A numerical example shows that the proposed method works well.


Sign in / Sign up

Export Citation Format

Share Document