scholarly journals Dynamic analysis of porous materials: Numerical simulation with an adaptive space-time FEM

PAMM ◽  
2007 ◽  
Vol 7 (1) ◽  
pp. 4070035-4070036
Author(s):  
Z. Chen ◽  
S. Diebels ◽  
H. Steeb
PAMM ◽  
2007 ◽  
Vol 7 (1) ◽  
pp. 4070011-4070012 ◽  
Author(s):  
Z. Chen ◽  
H. Steeb ◽  
S. Diebels

Author(s):  
Carlos Alberto Dutra Fraga Filho ◽  
Fernando César Meira Menandro ◽  
Rivânia Hermógenes Paulino de Romero ◽  
Juan Sérgio Romero Saenz

Author(s):  
Anahita Ayasoufi ◽  
Theo G. Keith ◽  
Ramin K. Rahmani

An improvement is introduced to the conservation element and solution element (CE/SE) phase change scheme presented previously. The improvement addresses a well known weakness in numerical simulations of the enthalpy method when the Stefan number, (the ratio of sensible to latent heat) is small (less than 0.1). Behavior of the improved scheme, at the limit of small Stefan numbers, is studied and compared with that of the original scheme. It is shown that high dissipative errors, associated with small Stefan numbers, do not occur using the new scheme.


2011 ◽  
Vol 48-49 ◽  
pp. 813-816 ◽  
Author(s):  
Qi Zhang ◽  
Jun Hai Ma

From a mathematical model of one kind complicated financial system, we make a dynamic analysis on this kind of system on the basis of studies of scholars both at home and abroad. We find characteristics of various dynamic systems driven by different parameters, and study possible Hopf bifurcation as well as the relationship between Hopf bifurcation and the values of parameters. Besides, we make use of algorithm to analyze complexity of the system. The results of numerical simulation prove that the theory used in the thesis is correct. This study is regarded with good theoretical and practical value.


2004 ◽  
Vol 126 (4) ◽  
pp. 673-682 ◽  
Author(s):  
F. G. Benitez ◽  
J. M. Madrigal ◽  
J. M. del Castillo

An infinitely variable transmission (IVT), based on the use of one-way action clutches, belonging to the family of ratcheting drives is described. The mechanical foundations and numerical simulations carried out along this research envisage a plausible approach to its use as gear-box in general mechanical industry and its prospective use in automobiles and self-propelled vehicles. The system includes one-way clutches—free wheels or overrunning clutches—and two epicyclic gear systems. The output velocity, with oscillatory character, common to the ratcheting drives systems, presents a period similar to that produced by alternative combustion motors, making this transmission compatible with automobile applications. The variation of the transmission is linear in all the working range. The kinematics operating principles behind this IVT is described followed by a numerical simulation of the dynamic analysis. A prototype has been constructed and tested to assess its mechanical efficiency for different reduction ratios. The efficiency values predicted by theory agree with those experimentally obtained on a bench-rig testing equipment.


2019 ◽  
Vol 213 ◽  
pp. 02011
Author(s):  
Jan Česenek

The article is concerned with the numerical simulation of the compressible turbulent gas flow through the porous media using space-time discontinuous Galerkin method.The mathematical model of flow is represented by the system of non-stationary Reynolds-Averaged Navier-Stokes (RANS) equations. The flow through the porous media is characterized by the loss of momentum. This RANS system is equipped with two-equation k-omega turbulence model. The discretization of these two systems is carried out separately by the space-time discontinuous Galerkin method. This method is based on the piecewise polynomial discontinuous approximation of the sought solution in space and in time. We present some numerical experiments to demonstrate the applicability of the method using own-developed code.


Sign in / Sign up

Export Citation Format

Share Document