rolling contact
Recently Published Documents


TOTAL DOCUMENTS

2993
(FIVE YEARS 409)

H-INDEX

65
(FIVE YEARS 9)

Author(s):  
Prasad Mahendra Rao ◽  
Stefano Foletti ◽  
Luca Bonaiti ◽  
Franco Concli ◽  
Carlo Gorla ◽  
...  

Author(s):  
Maksym Spiryagin ◽  
Qing Wu ◽  
Oldrich Polach ◽  
John Thorburn ◽  
Wenhsi Chua ◽  
...  

AbstractLocomotive design is a highly complex task that requires the use of systems engineering that depends upon knowledge from a range of disciplines and is strongly oriented on how to design and manage complex systems that operate under a wide range of different train operational conditions on various types of tracks. Considering that field investigation programs for locomotive operational scenarios involve high costs and cause disruption of train operations on real railway networks and given recent developments in the rollingstock compliance standards in Australia and overseas that allow the assessment of some aspects of rail vehicle behaviour through computer simulations, a great number of multidisciplinary research studies have been performed and these can contribute to further improvement of a locomotive design technique by increasing the amount of computer-based studies. This paper was focused on the presentation of the all-important key components required for locomotive studies, starting from developing a realistic locomotive design model, its validation and further applications for train studies. The integration of all engineering disciplines is achieved by means of advanced simulation approaches that can incorporate existing AC and DC locomotive designs, hybrid locomotive designs, full locomotive traction system models, rail friction processes, the application of simplified and exact wheel-rail contact theories, wheel-rail wear and rolling contact fatigue, train dynamic behaviour and in-train forces, comprehensive track infrastructure details, and the use of co-simulation and parallel computing. The co-simulation and parallel computing approaches that have been implemented on Central Queensland University’s High-Performance Computing cluster for locomotive studies will be presented. The confidence in these approaches is based on specific validation procedures that include a locomotive model acceptance procedure and field test data. The problems and limitations presented in locomotive traction studies in the way they are conducted at the present time are summarised and discussed.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 392
Author(s):  
Kamran Esmaeili ◽  
Ling Wang ◽  
Terry J. Harvey ◽  
Neil M. White ◽  
Walter Holweger

The reliability of rolling element bearings has been substantially undermined by the presence of parasitic and stray currents. Electrical discharges can occur between the raceway and the rolling elements and it has been previously shown that these discharges at relatively high current density levels can result in fluting and corrugation damages. Recent publications have shown that for a bearing operating at specific mechanical conditions (load, temperature, speed, and slip), electrical discharges at low current densities (<1 mA/mm2) may substantially reduce bearing life due to the formation of white etching cracks (WECs) in bearing components, often in junction with lubricants. To date, limited studies have been conducted to understand the electrical discharges at relatively low current densities (<1 mA/mm2), partially due to the lack of robust techniques for in-situ quantification of discharges. This study, using voltage measurement and electrostatic sensors, investigates discharges in an oil-lubricated steel-steel rolling contact on a TE74 twin-roller machine under a wide range of electrical and mechanical conditions. The results show that the discharges events between the rollers are influenced by temperature, load, and speed due to changes in the lubricant film thickness and contact area, and the sensors are effective in detecting, characterizing and quantifying the discharges. Hence, these sensors can be effectively used to study the influence of discharges on WEC formation.


Author(s):  
Efoe Rodrigue Wallace ◽  
Thibaut Chaise ◽  
Daniel Nelias

2021 ◽  
Author(s):  
Brodie Hoyer ◽  
Rong Long ◽  
Mark E. Rentschler

Abstract Rolling contact experimentation is a viable and instructive method for exploring the adhesive contact between surfaces. When applied to soft elastomeric or engineered surfaces, the results of such experiments can provide insights relevant to medical robotics, soft gripping applications, and reversible dry adhesives for bandages or wearable devices. We have designed and built a tribometric device to capture normal and tangential forces between a rolling indenter and substrate correlated with contact area imaging. The device was validated using an experimental setup involving a rigid, nominally smooth acrylic cylinder rolling against a flat polydimethylsiloxame (PDMS) substrate, the results of which matched favorably with accepted contact mechanics theories. The second test involved an indenter with a rigid core and thin (3 mm) smooth shell of a highly deformable, viscoelastic polyvinyl chloride (PVC) rolling on the same PDMS substrate. This test deviated significantly from analytical predictions, highlighting the effects of finite-thickness effects, viscoelasticity, and interfacial slip. This device will facilitate experimental investigations of the rolling contact mechanics between textured surfaces and soft tissue-like materials, which is an important fundamental problem in medical robotics.


2021 ◽  
pp. 1-26
Author(s):  
Tonglong Huo ◽  
Jingjun Yu ◽  
Hongzhe Zhao ◽  
Xian Wei

Abstract Compliant linear-motion mechanisms are of great use in precision machines, due to their excellent performances such as infinite resolution and low cost. The accuracy of the mechanisms is an important consideration for mechanical design in applications, especially in the case of large working load. Considering that COmpliant Rolling-contact Element (CORE) pivot is characterized with high bearing capacity, the paper adopts it as a building block to design a family of compliant linear-motion mechanisms for applications of heavy load. These mechanisms are achieved by replacing four rigid pivots in a parallel four-bar mechanism with CORE pivots, and the motion accuracy is improved by means of contacting surfaces design of four CORE pivots. Firstly, structures of CORE pivot are introduced and five extended arrangements for bearing heavy load are presented. Meanwhile, motion for the CORE pivot is analyzed and preconditions for achieving a pure roll are discussed. Then, configuration of the compliant linear-motion mechanisms constructed by CORE pivots is obtained, and kinematics of the mechanisms is analyzed and parametric design condition for rectilinear motion is modeled. Based on the condition, detailed topological structures of the mechanisms are designed. Finally, motion simulations and experiment tests are implemented to verify accuracy of the proposed mechanisms. The results demonstrate that the mechanisms proposed in this paper are capable of offering a high-precision linear motion and providing a promising application prospect in precision machines.


Author(s):  
Yap Jun Heng ◽  
Nurul Farhana Mohd Yusof ◽  
Lee Ann Yen ◽  
Shazlina Abd Hamid ◽  
Nurul Nadzirah Mohd Yusof

Grease lubricants are widely used in rolling contact applications to reduce friction between two rolling surfaces. Improper lubrication may cause high contact stress and deformation to the bearings and lead to machine failure The purpose of this study is to investigate the coefficient of friction produced by newly developed palm oil-based grease and to investigate the contact characteristics in lubricated roller bearings. In this work, the coefficient of friction of new greases was evaluated experimentally and the values were compared with the conventional mineral oil-based grease to investigate the friction performance. The friction test was performed using a four-ball tester. The finite element model was developed based on the roller bearing geometry and the simulation was carried out the evaluate the contact characteristic. The experimental result shows that the palm oil grease formulation A had the least coefficient of friction, followed by palm oil grease formulation B, mineral grease and food grade grease. This indicates that palm oil-based grease has the potential to be applied in rolling contact applications due to low friction characteristics. Finite element analysis shows that the maximum von Mises stress and total deformation for frictional contact are higher than the frictionless contact. For the frictional contact analysis with various lubricant COF, similar values were obtained with von Mises stress at 400.69 MPa and 3.4033×10-4 mm deformation. The finding shows that the small difference in grease COF did not affect the rolling contact. The finding also shows that the newly developed biodegradable grease has a similar performance in terms of rolling contact friction and contact characteristic in a condition that the bearing is operating in normal condition.


Sign in / Sign up

Export Citation Format

Share Document