High‐velocity impact performance of shear‐thickening fluid/kevlar composites made by the padding process

2018 ◽  
Vol 40 (8) ◽  
pp. 3040-3049 ◽  
Author(s):  
Shu‐Kai Yeh ◽  
Hong‐Yi Zhuang ◽  
Yao‐Chun Chen ◽  
Po‐Chun Tseng ◽  
Jie‐Yu Zheng ◽  
...  
2017 ◽  
Vol 31 (3) ◽  
pp. 392-407 ◽  
Author(s):  
A Khodadadi ◽  
GH Liaghat ◽  
AR Sabet ◽  
H Hadavinia ◽  
A Aboutorabi ◽  
...  

This study presents the high-velocity impact performance of a composite material composed of woven Kevlar fabric impregnated with a colloidal shear thickening fluids (STFs). Although the precise role of the STF in the high-velocity defeat, process is not exactly known but it is suspected to be due to the increased frictional interaction between yarns in impregnated fabrics. In order to explore the mechanism of this enhanced energy absorption, high-velocity impact test was conducted on neat, impregnated fabric and also on pure STF without fabric. A finite element model has been carried out to consider the effect of STF impregnation on the ballistic performance. For this purpose, fabric was modeled using LS-DYNA by employing the experimental results of yarn pull-out tests to characterize the frictional behavior of the STF impregnated fabric. The simulation result is a proof that the increased performance for STF impregnated Kevlar fabric is due to the increased friction.


2018 ◽  
Vol 183 ◽  
pp. 01044
Author(s):  
Djalel Eddine Tria ◽  
Larbi Hemmouche ◽  
Abdelhadi Allal ◽  
Abdelkader Benouali

This investigation aims to study the efficiency of STF impregnated plain-weave fabric made of Kevlar under high and low velocity impact conditions. The shear thickening fluid (STF) was prepared by ultrasound irradiation of silica nanoparticles (diameter ≈30 nm) dispersed in liquid polyethylene glycol polymer. STF impregnation effect was determined from single yarn pull-out test and penetration at low velocity using drop weight machine equipped with hemi-spherical penetrator and dynamic force sensor. Force-displacement curves of neat and impregnated Kevlar were analysed and compared. Also, the STF impregnation effect on Kevlar multilayers was analysed from high velocity impact tests using 9mm FMJ bullet at 390 m/s. After impact, Back face deformation (BFD) of neat and impregnated Kevlar layers were measured and compared. Results showed that STF impregnated fabrics have better energy absorption and penetration resistance as compared to neat fabrics without affecting the fabric flexibility. When relative yarn translations are restricted (e.g. at very high levels of friction), windowing and yarn pull-out cannot occur, and the fibres engaged with the projectile fail in tension that leads to fabric penetration. Microscopy of these fabrics after testing have shown pitting and damage to the Kevlar filaments caused by the hard silica particles used in the STF. Mesoscopic 3D Finite Element models were developed using explicit LS-DYNA hydrocode to account for STF impregnation by employing the experimental results of yarn pull-out tests, low and high velocity impacts. It was found that friction between fibers and yarns increase the dissipation of energy upon impact by restricting fiber mobility, increasing the energy required for relative yarn translations and transferring the impact energy to a larger number of fibers.


2020 ◽  
pp. 089270572097617
Author(s):  
B Yelamanchi ◽  
E MacDonald ◽  
NG Gonzalez-Canche ◽  
JG Carrillo ◽  
P Cortes

Fiber Metal Laminates (FML) are structures that contain a sequential arrangement of metal and composite materials, which are of great interest to the aerospace sector due to the superior mechanical performance. The traditional manufacturing process for FML involves considerable investment in manufacturing resources depending on the design complexity of the desired components. To mitigate such limitations, 3D printing enables direct digital manufacturing to create FML with customized configurations. In this work, a preliminary mechanical characterization of additively-manufacturing-enabled FML has been investigated. A series of continuous glass fiber-reinforced composites were printed with a Markforged system and placed between layers of aluminum alloy to manufacture hybrid laminate structures. The laminates were subjected to tensile, interfacial fracture toughness, and both low-velocity and high-velocity impact tests. The results showed that the FMLs appear to have a good degree of adhesion at the metal-composite interface, although a limited intralaminar performance was recorded. It was also observed that the low and high-velocity impact performance of the FMLs was improved by 9–13% relative to that of the constituent elements. The impact performance of the FML appeared to be related to the fiber fracture, out of plane perforation and interfacial delamination within the laminates. The present study can provide an initial research foundation for considering 3D printing in the production of hybrid laminates for static and dynamic applications.


2010 ◽  
Vol 39 (12) ◽  
pp. 2536-2543 ◽  
Author(s):  
Ning Zhang ◽  
Yaowu Shi ◽  
Fu Guo ◽  
Fuqian Yang

2021 ◽  
Author(s):  
D. MUNIRAJ ◽  
S. MUGHILARASAN ◽  
V. M. SREEHARI

Composite plays a significant role in the field of aerospace due to its excellent mechanical properties, nevertheless, they are highly susceptible to out-of-plane impact load. Fibre-reinforced composite fails effortlessly under impact load and absorb energy through damage mechanics rather than deformation. The present study investigates the damage behaviour of the CNT reinforced carbon fibre-epoxy composite under high velocity impact using single stage gas gun. Composite plates were fabricated with 0 to 0.6 weight percentage content of CNT as reinforcement using vacuum assisted resin transfer moulding. A series of impact test with various impact energy was carried out on carbon/epoxy composite plate to study the impact performance. From the experimentation it was observed that the 0.3 weight percentage CNT addition provides the optimum impact performance. Damage characterization was performed for various impact velocity based on the micro and macro scale damage area. Knowledge of the damage behaviour of CNT reinforced carbon fibreepoxy composite plate under high velocity impact loads is essential for both the product development and material selection in the aerospace application.


2019 ◽  
Vol 26 (5-6) ◽  
pp. 1389-1410 ◽  
Author(s):  
Jun Liu ◽  
Haibao Liu ◽  
Cihan Kaboglu ◽  
Xiangshao Kong ◽  
Yuzhe Ding ◽  
...  

Abstract The present paper investigates the impact performance of woven-fabric carbon-fibre composites based upon both thermoplastic- and thermoset-matrix polymers under high-velocity impact loading by conducting gas-gun experiments at impact velocities of up to 100 m.s−1. The carbon-fibre reinforced-polymers (CFRPs) are impacted using soft- (i.e. gelatine) and hard- (i.e. aluminium-alloy) projectiles to simulate either a soft bird-strike or a hard foreign-body impact (e.g. runway debris), respectively, on typical composites employed in civil aircraft. The out-of-plane displacements of the impacted composite specimen are obtained by means of a three-dimensional Digital Image Correlation (DIC) system for the soft-projectile impact on the composites and the extent of damage is assessed both visually and by using portable C-scan equipment. The perforation resistance and energy absorbing capability of the composites are also studied by performing high-velocity impact experiments using the hard-projectile and the resulting extent and type of damage are identified. In addition, a Finite Element (FE) model is also developed to investigate the interaction between the projectile and the composite target.


Sign in / Sign up

Export Citation Format

Share Document