impact characteristics
Recently Published Documents


TOTAL DOCUMENTS

327
(FIVE YEARS 71)

H-INDEX

19
(FIVE YEARS 5)

2022 ◽  
Vol 295 ◽  
pp. 110836
Author(s):  
Yanfei Wang ◽  
Weizu Wang ◽  
Han Fu ◽  
Zhou Yang ◽  
Huazhong Lu

2022 ◽  
Vol 64 (1) ◽  
pp. 20-27
Author(s):  
Fengfeng Bie ◽  
Sheng Gu ◽  
Yue Guo ◽  
Gang Yang ◽  
Jian Peng

A gearbox vibration signal contains non-linear impact characteristics and the significant feature information tends to be overwhelmed by other interference components, which make it difficult to extract the typical fault features fully and effectively. Aiming at the key issue of how to effectively extract the impact characteristics, a fault diagnosis method based on improved extreme symmetric mode decomposition (ESMD) and a support vector machine (SVM) is proposed in this paper. The vibration signal is adaptively decomposed into multiple intrinsic mode function (IMF) components by the improved ESMD and then a certain number of components are selected with the maximum kurtosis-envelope spectrum index. The singular spectral entropy, energy entropy and permutation entropy of each component are applied to construct the feature vector set, in which the dimensionality of the set is reduced with the distance separability criterion. Finally, the dimension-reduced feature vector set is input into the SVM for pattern recognition. Dynamic simulation and experimental gearbox research show that the improved ESMD method can extract and identify gearbox fault information effectively.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260520
Author(s):  
Shuji Kidokoro ◽  
Yoshitaka Morishita

In the game of softball, the batter should possess the necessary skills to hit the ball toward various directions with high initial speed. However, because various factors influence each other, there are limitations to the range that can be controlled by the batter’s skill. This study was aimed at extracting the impact characteristics associated with the launch speed/direction and batted ball spin and clarifying the important skills required to improve the batter’s hitting performance. In our experiments, 20 female softball players, who are members of the Japan women’s national softball team, hit balls launched from a pitching machine. The movements of the ball and bat before, during, or after the impact were recorded using a motion capture system. Stepwise multiple regression analysis was performed to extract factors relating the side spin rate. The undercut angle (elevation angle between the bat’s trajectory and the common normal between the ball and bat: ΔR2 = 0.560) and the horizontal bat angle (azimuth of bat’s long axis at ball impact: ΔR2 = 0.299) were strongly associated with the side spin rate (total R2 = 0.893, p < 0.001). The undercut angle in opposite-field hitting was significantly larger than that in pull-side hitting (p < 0.001). The side spin rate was associated with the undercut angle because the bat’s distal (barrel) side inclined downward (–29.6 ± 8.7°) at impact. The ball exit velocity was higher when it was hit at a smaller undercut angle (R2 = 0.523, p < 0.001). Therefore, it is deemed desirable to focus on maximizing the ball exit velocity rather than ball spin because the ball–bat impact characteristics vary inevitably depending on the launch direction. Meanwhile, the use of the ball delivery machine and the slower pitched ball are the limiting factors in the generalization of the findings.


Author(s):  
C Jones ◽  
L Audas ◽  
N Kureshi ◽  
L Kamintsky ◽  
L Fenerty ◽  
...  

Background: Repetitive sub-concussive head impacts have been associated with changes in brain architecture and neurological symptoms. In this study, we examined the association between repetitive sub-concussive impacts, impact burden, and blood brain barrier (BBB) integrity in university football players. Methods: 59 university football players were followed over the 2019 season. Athletes with diagnosed concussion and those sustaining impacts that alerted a sideline impact monitor (relayed by ferroelectric helmet sensors) underwent dynamic contrast-enhanced MRI (DCE-MRI) within one week of injury/alert, and 4 weeks following initial incident. Results: Helmets recorded 2648 impacts over 48 cumulative hours. 8 concussions occurred during the 2019 season (2.82 per 1000 activity hours). On average, athletes with a diagnosed concussion had 55.3 impacts to the front sensor, compared to 14.1 in non-concussed athletes. Athletes who consented to DCE-MRI (n=5) had 10.78% BBB-D within a week of concussion/alert, and 6.77% BBB-D at 4-weeks. Conclusions: We show quantification of BBB integrity relative to head impact burden for the first time. This preliminary study highlights the potential of impact-detecting helmets to provide relevant impact characteristics and offers a foundation for future work on neurological consequences of repetitive sub-concussive impacts.


Ultrasonics ◽  
2021 ◽  
pp. 106634
Author(s):  
Qinglong Zhang ◽  
Su Zhao ◽  
Aziz Ul Hassan Mohsan ◽  
Lei Yu ◽  
Menggang Zhai ◽  
...  

2021 ◽  
Vol 14 (19) ◽  
Author(s):  
Wu Shuaifeng ◽  
Cai Hong ◽  
Xiao Jianzhang ◽  
DU Jifang ◽  
Yan Jun ◽  
...  

2021 ◽  
Author(s):  
Zhongyuan Wo ◽  
Julia M. Raneses ◽  
Evgueni T. Filipov

Abstract Energy absorption devices are widely used to mitigate damage from collisions and impact loads. Due to the inherent uncertainty of possible impact characteristics, passive energy absorbers with fixed mechanical properties are not capable of serving in versatile application scenarios. Here, we explore a deployable design concept where origami tubes can extend, lock, and are intended to absorb energy through crushing (buckling and plasticity). This system concept is unique because origami deployment can increase the crushing distance between two impacting bodies and can tune the energy absorption characteristics. We show that the stiffness, peak crushing force, and total energy absorption of the origami tubes all increase with the deployed state. We present numerical and experimental studies that investigate these tunable behaviors under both static and dynamic scenarios. The energy-absorbing performance of the deployed origami tubes is slightly better than conventional prismatic tubes in terms of total absorbed energy and peak force. When the origami tubes are only partially deployed, they exhibit a nearly-elastic collapse behavior, however, when they are locked in a more deployed configuration they can experience non-recoverable crushing with higher energy absorption. Parametric studies reveal that the geometric design of the tube can control the nonlinear relationship between energy absorption and deployment. This concept for deployable energy-absorbing origami tubes can enable future protective systems with on-demand properties for different impact scenarios.


Sign in / Sign up

Export Citation Format

Share Document