On the difference between atom-bond connectivity index and Randić index of binary and chemical trees

2017 ◽  
Vol 117 (23) ◽  
pp. e25446 ◽  
Author(s):  
Akbar Ali ◽  
Zhibin Du
Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1591
Author(s):  
Wan Nor Nabila Nadia Wan Zuki ◽  
Zhibin Du ◽  
Muhammad Kamran Jamil ◽  
Roslan Hasni

Let G be a simple, connected and undirected graph. The atom-bond connectivity index (ABC(G)) and Randić index (R(G)) are the two most well known topological indices. Recently, Ali and Du (2017) introduced the difference between atom-bond connectivity and Randić indices, denoted as ABC−R index. In this paper, we determine the fourth, the fifth and the sixth maximum chemical trees values of ABC−R for chemical trees, and characterize the corresponding extremal graphs. We also obtain an upper bound for ABC−R index of such trees with given number of pendant vertices. The role of symmetry has great importance in different areas of graph theory especially in chemical graph theory.


2002 ◽  
Vol 67 (2) ◽  
pp. 87-97 ◽  
Author(s):  
Ivan Gutman ◽  
Dusica Vidovic ◽  
Anka Nedic

The connectivity index of an organic molecule whose molecular graph is Gis defined as C(?)=?(?u?v)??where ?u is the degree of the vertex u in G, where the summation goes over all pairs of adjacent vertices of G and where ? is a pertinently chosen exponent. The usual value of ? is ?1/2, in which case ?=C(?1/2) is referred to as the Randic index. The ordering of isomeric alkanes according to ??follows the extent of branching of the carbon-atom skeleton. We now study the ordering of the constitutional isomers of alkanes with 6 through 10 carbon atoms with respect to C(?) for various values of the parameter ?. This ordering significantly depends on ?. The difference between the orderings with respect to ??and with respect to C(?) is measured by a function ??and the ?-dependence of ??was established.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiujun Zhang ◽  
Muhammad Naeem ◽  
Abdul Qudair Baig ◽  
Manzoor Ahmad Zahid

Topological indices give immense information about a molecular structure or chemical structure. The hardness of materials for the indentation can be defined microscopically as the total resistance and effect of chemical bonds in the respective materials. The aim of this paper is to study the hardness of some superhard B C x crystals by means of topological indices, specifically Randić index and atom-bond connectivity index.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1151
Author(s):  
Paul Bosch ◽  
Edil D. Molina ◽  
José M. Rodríguez ◽  
José M. Sigarreta

In this work, we obtained new results relating the generalized atom-bond connectivity index with the general Randić index. Some of these inequalities for ABCα improved, when α=1/2, known results on the ABC index. Moreover, in order to obtain our results, we proved a kind of converse Hölder inequality, which is interesting on its own.


1990 ◽  
Vol 55 (3) ◽  
pp. 630-633 ◽  
Author(s):  
Milan Kunz

It is shown that the product νiνj of degrees ν of vertices ij, incident with the edge ij, is the number of paths of length 1, 2, and 3 in which the edge is in the center. The unified connectivity index χm = Σ(νiνj)m, where the sum is made over all edges, with m = 1, is the sum of the number of edges, the Platt number and the polarity number. And it is identical with the half sum of the cube A3 of the adjacency matrix A. The Randić index χ-1/2 of regular graphs does not depend on their connectivity.


2014 ◽  
Vol 12 (11) ◽  
Author(s):  
Hua Wang

AbstractIn this note we consider a discrete symmetric function f(x, y) where $$f(x,a) + f(y,b) \geqslant f(y,a) + f(x,b) for any x \geqslant y and a \geqslant b,$$ associated with the degrees of adjacent vertices in a tree. The extremal trees with respect to the corresponding graph invariant, defined as $$\sum\limits_{uv \in E(T)} {f(deg(u),deg(v))} ,$$ are characterized by the “greedy tree” and “alternating greedy tree”. This is achieved through simple generalizations of previously used ideas on similar questions. As special cases, the already known extremal structures of the Randic index follow as corollaries. The extremal structures for the relatively new sum-connectivity index and harmonic index also follow immediately, some of these extremal structures have not been identified in previous studies.


Sign in / Sign up

Export Citation Format

Share Document