general randic index
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 14)

H-INDEX

7
(FIVE YEARS 2)

2022 ◽  
Vol 2022 ◽  
pp. 1-4
Author(s):  
Muhammad Kamran Jamil ◽  
Aisha Javed ◽  
Ebenezer Bonyah ◽  
Iqra Zaman

The first general Zagreb index M γ G or zeroth-order general Randić index of a graph G is defined as M γ G = ∑ v ∈ V d v γ where γ is any nonzero real number, d v is the degree of the vertex v and γ = 2 gives the classical first Zagreb index. The researchers investigated some sharp upper and lower bounds on zeroth-order general Randić index (for γ < 0 ) in terms of connectivity, minimum degree, and independent number. In this paper, we put sharp upper bounds on the first general Zagreb index in terms of independent number, minimum degree, and connectivity for γ . Furthermore, extremal graphs are also investigated which attained the upper bounds.


2022 ◽  
Vol 306 ◽  
pp. 7-16
Author(s):  
Monther Rashed Alfuraidan ◽  
Kinkar Chandra Das ◽  
Tomáš Vetrík ◽  
Selvaraj Balachandran

Author(s):  
Tomáš Vetrík

We study the general Randić index of a graph [Formula: see text], [Formula: see text], where [Formula: see text], [Formula: see text] is the edge set of [Formula: see text] and [Formula: see text] and [Formula: see text] are the degrees of vertices [Formula: see text] and [Formula: see text], respectively. For [Formula: see text], we present lower bounds on the general Randić index for unicyclic graphs of given diameter and girth, and unicyclic graphs of given diameter. Lower bounds on the classical Randić index and the second modified Zagreb index are corollaries of our results on the general Randić index.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1151
Author(s):  
Paul Bosch ◽  
Edil D. Molina ◽  
José M. Rodríguez ◽  
José M. Sigarreta

In this work, we obtained new results relating the generalized atom-bond connectivity index with the general Randić index. Some of these inequalities for ABCα improved, when α=1/2, known results on the ABC index. Moreover, in order to obtain our results, we proved a kind of converse Hölder inequality, which is interesting on its own.


2021 ◽  
Vol 6 (12) ◽  
pp. 13887-13906
Author(s):  
Fei Yu ◽  
◽  
Hifza Iqbal ◽  
Saira Munir ◽  
Jia Bao Liu ◽  
...  

<abstract><p>In the chemical industry, topological indices play an important role in defining the properties of chemical compounds. They are numerical parameters and structure invariant. It is a proven fact by scientists that topological properties are influential tools for interconnection networks. In this paper, we will use stellation, medial and bounded dual operations to build transformed networks from zigzag and triangular benzenoid structures. Using M-polynomial, we compute the first and second Zagreb indices, second modified Zagreb indices, symmetric division index, general Randic index, reciprocal general Randic index. We also calculate atomic bond connectivity index, geometric arithmetic index, harmonic index, first and second Gourava indices, first and second hyper Gourava indices.</p></abstract>


2021 ◽  
Vol 7 (2) ◽  
pp. 2529-2542
Author(s):  
Chang Liu ◽  
◽  
Jianping Li

<abstract><p>The zeroth-order general Randić index of graph $ G = (V_G, E_G) $, denoted by $ ^0R_{\alpha}(G) $, is the sum of items $ (d_{v})^{\alpha} $ over all vertices $ v\in V_G $, where $ \alpha $ is a pertinently chosen real number. In this paper, we obtain the sharp upper and lower bounds on $ ^0R_{\alpha} $ of trees with a given domination number $ \gamma $, for $ \alpha\in(-\infty, 0)\cup(1, \infty) $ and $ \alpha\in(0, 1) $, respectively. The corresponding extremal graphs of these bounds are also characterized.</p></abstract>


2020 ◽  
Vol 39 (5) ◽  
pp. 7787-7794
Author(s):  
Muhammad Imran ◽  
Shehnaz Akhter ◽  
Hani Shaker

Inequalities are a useful method to investigate and compare topological indices of graphs relatively. A large collection of graph associated numerical descriptors have been used to examine the whole structure of networks. In these analysis, degree related topological indices have a significant position in theoretical chemistry and nanotechnology. Thus, the computation of degree related indices is one of the successful topic of research. Given a molecular graph H , the general Randić connectivity index is interpreted as R α ( H ) = ∑ ℛ ∈ E ( H ) ( deg H ( a ) deg H ( b ) ) α , with α is a real quantity. Also a graph transformation of H provides a comparatively simpler isomorphic structure with an ease to work on different chemical properties. In this article, we determine the sharp bounds of general Randić index of numerous graph transformations, such that semi-total-point, semi-total-line, total and eight individual transformations H fgh , where f, g, h ∈ {+ , -} of graphs by using combinatorial inequalities.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Xu Li ◽  
Maqsood Ahmad ◽  
Muhammad Javaid ◽  
Muhammad Saeed ◽  
Jia-Bao Liu

A topological invariant is a numerical parameter associated with molecular graph and plays an imperative role in the study and analysis of quantitative structure activity/property relationships (QSAR/QSPR). The correlation between the entire π-electron energy and the structure of a molecular graph was explored and understood by the first Zagreb index. Recently, Liu et al. (2019) calculated the first general Zagreb index of the F-sum graphs. In the same paper, they also proposed the open problem to compute the general Randić index RαΓ=∑uv∈EΓdΓu×dΓvα of the F-sum graphs, where α∈R and dΓu denote the valency of the vertex u in the molecular graph Γ. Aim of this paper is to compute the lower and upper bounds of the general Randić index for the F-sum graphs when α∈N. We present numerous examples to support and check the reliability as well as validity of our bounds. Furthermore, the results acquired are the generalization of the results offered by Deng et al. (2016), who studied the general Randić index for exactly α=1.


Sign in / Sign up

Export Citation Format

Share Document