A study of orientation effects of electronegative substituents on vicinal carbon-proton spin-spin coupling constants and the correlation of the latter with proton-proton coupling constants in the individual rotamers of 13CH3-C(X)1H-C(Y)1H2 fragments

2010 ◽  
Vol 99 (5) ◽  
pp. 154-160 ◽  
Author(s):  
Tom Spoormaker ◽  
Marius J. A. de Bie
1979 ◽  
Vol 34 (1) ◽  
pp. 118-120 ◽  
Author(s):  
Wolfgang Runge

Abstract It is shown that substituent effects on one-bond and long-range carbon-proton coupling constants in monosubstituted allenes parallel quantitatively ab initio STO-3G carbon 2s-hydrogen 1 s overlap populations, irrespectively of whether the substituents are bonded to the allenic skeleton via first-row (C, O) or second-row (Si, S, Cl) atoms.


1977 ◽  
Vol 55 (22) ◽  
pp. 3936-3941 ◽  
Author(s):  
Ted Schaefer ◽  
Kirk Marat ◽  
Kalvin Chum ◽  
Alexander F. Janzen

The syntheses and the analyses of the high resolution proton and fluorine magnetic resonance spectra of the 3-fluoro-4-methyl-, 2-fluoro-5-chloro-, 2-fluoro-6-chloro-, 2,6-difluoro-, and of the pentafluorobenzoyl fluorides are reported. The spin–spin coupling constants over five bonds between the sidechain fluorine-19 and the ring protons are sensitive to intrinsic substituent perturbations. Their use in the deduction of conformational preferences is much more problematical than is the use of the corresponding proton–proton couplings in benzaldehyde derivatives. The 2-fluoro-6-chloro compound is nonplanar, as indicated by a finite magnitude of the long-range proton–fluorine coupling over six bonds. The nonplanarity is also indicated by a comparison of the through-space fluorine–fluorine coupling to those in the other compounds. The chemical shift of the sidechain fluorine moves to low field by over 35 ppm as the size of the two ortho substituents increases. The individual shifts are discussed in terms of intramolecular van der Waals interactions and of out-of-plane twisting of the COF group.


1970 ◽  
Vol 48 (14) ◽  
pp. 2303-2305 ◽  
Author(s):  
M. W. Roomi ◽  
H. Dugas

The chemical shifts and the ring proton coupling constants of various substituted carbethoxypyrroles are reported.The electron-withdrawing effect of the carbethoxy groups shifts the resonances of the ring substituents to low field while the inductive and mesomeric effects of the methyl groups shift the resonances to higher field. The deshielding effect is more pronounced with 2-carbethoxypyrroles than for 3-carbethoxypyrroles. The ring proton spin–spin coupling constants depend on the nature of substituents and increase with the electronegativity of the substituents. In some cases long-range coupling between the methyl side-chain protons and ring protons could be observed.


1975 ◽  
Vol 53 (18) ◽  
pp. 2734-2741 ◽  
Author(s):  
Ted Schaefer ◽  
Kalvin Chum ◽  
David McKinnon ◽  
M. S. Chauhan

The carbon-13 satellite peaks in the proton magnetic resonance spectra of 1,3-dioxole and bis-1,3-dioxolyl are analyzed under single and double resonance conditions to yield the signs and magnitudes of proton–proton coupling constants over three, four, and five bonds, and of proton–carbon-13 coupling constants over one, two, and three bonds. The conformational behavior of bis-1,3-dioxolyl contrasts sharply with that of analogous sym-tetrasubstituted ethane derivatives. It is indicated that the two-bond proton–carbon-13 coupling in the ethanic fragment can be used for conformational analysis in a manner similar to vicinal proton–proton couplings. The vicinal three-bond proton–carbon-13 couplings are given for dihedral angles of 180 and 120° and their relative magnitudes are as expected from a Karplus relationship. The two-bond proton–carbon-13 coupling in the olefinic fragment is, at 20.0 Hz, the largest coupling known for such a bond.


1969 ◽  
Vol 47 (21) ◽  
pp. 4005-4010 ◽  
Author(s):  
S. S. Danyluk ◽  
C. L. Bell ◽  
T. Schaefer

The long-range proton–proton coupling constants between the ring protons and the aldehydic proton are reported for a series of para-substituted benzaldehyde derivatives. It was found that JoH,CHO < 0 and JmH,CHO > 0. Furthermore, JoH,CHO increases in magnitude as the electron donating power of the sub-stituent increases. A similar trend is observed forJmH,CHO but the ratio of the increase to the magnitude of JmH,CHO is much less than for JoH,CHO. A good correlation is obtained between JoH,CHO and the sub-stituent parameters of Swain and Lupton.The coupling constant data are discussed in terms of σ and π coupling mechanisms and it is concluded that σ electron mechanisms are dominant for both JoH,CHO and JmH,CHO.


Sign in / Sign up

Export Citation Format

Share Document