Motility imaging via optical coherence phase microscopy enables label-free monitoring of tissue growth and viability in 3D tissue-engineering scaffolds

2013 ◽  
Vol 9 (5) ◽  
pp. 641-645 ◽  
Author(s):  
Christina Holmes ◽  
Maryam Tabrizian ◽  
Pierre O. Bagnaninchi
2009 ◽  
Vol 25 (2) ◽  
pp. 275-281 ◽  
Author(s):  
Chulmin Joo ◽  
Emre Özkumur ◽  
M. Selim Ünlü ◽  
Johannes F. de Boer

2012 ◽  
Vol 2 (1) ◽  
pp. 186-194 ◽  
Author(s):  
Cécile M. Bidan ◽  
Krishna P. Kommareddy ◽  
Monika Rumpler ◽  
Philip Kollmannsberger ◽  
Peter Fratzl ◽  
...  

2014 ◽  
Vol 19 (4) ◽  
pp. 046003 ◽  
Author(s):  
Suho Ryu ◽  
Kyung-A Hyun ◽  
Jung Heo ◽  
Hyo-Il Jung ◽  
Chulmin Joo

2019 ◽  
Author(s):  
AS Arampatzis ◽  
K Theodoridis ◽  
E Aggelidou ◽  
KN Kontogiannopoulos ◽  
I Tsivintzelis ◽  
...  

2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


Author(s):  
Vikas V. Gaikwad ◽  
Abasaheb B. Patil ◽  
Madhuri V. Gaikwad

Scaffolds are used for drug delivery in tissue engineering as this system is a highly porous structure to allow tissue growth.  Although several tissues in the body can regenerate, other tissue such as heart muscles and nerves lack regeneration in adults. However, these can be regenerated by supplying the cells generated using tissue engineering from outside. For instance, in many heart diseases, there is need for heart valve transplantation and unfortunately, within 10 years of initial valve replacement, 50–60% of patients will experience prosthesis associated problems requiring reoperation. This could be avoided by transplantation of heart muscle cells that can regenerate. Delivery of these cells to the respective tissues is not an easy task and this could be done with the help of scaffolds. In situ gel forming scaffolds can also be used for the bone and cartilage regeneration. They can be injected anywhere and can take the shape of a tissue defect, avoiding the need for patient specific scaffold prefabrication and they also have other advantages. Scaffolds are prepared by biodegradable material that result in minimal immune and inflammatory response. Some of the very important issues regarding scaffolds as drug delivery systems is reviewed in this article.


2011 ◽  
Vol 17 (21-22) ◽  
pp. 2583-2592 ◽  
Author(s):  
Jessica A. DeQuach ◽  
Shauna H. Yuan ◽  
Lawrence S.B. Goldstein ◽  
Karen L. Christman

Sign in / Sign up

Export Citation Format

Share Document