Although flexible wearable conductive textiles for various applications have attracted great attention from researchers in recent years, it is still a great challenge to fabricate conductive textiles with the advantages of a simple fabrication process, excellent flexibility, environmental friendliness, and superior performance. Carbonized cellulose materials are gradually emerging in flexible electronics due to their flexibility, low cost, abundant raw materials, and electrical conductivity. Herein, carbonized cotton fabrics were fabricated from cotton fabrics via a simple carbonization process. Then carbonized cotton/thermoplastic polyurethane composites, with excellent electric heating performance and pressure sensing performance, were fabricated through a dip-and-dry method. Carbonized cotton/thermoplastic polyurethane composites show satisfactory electrical conductivity, electric heating temperature rising performance, heating stability, and resistance stability. The surface temperature of carbonized cotton/thermoplastic polyurethane composites can reach ≈53°C within 1.5 min at 5 V. Besides this, the fabricated flexible pressure sensor based on carbonized cotton/thermoplastic polyurethane composites exhibits the combined superiority of a wide working range (0–16 kPa), high sensitivity (98.77 kPa−1), and excellent durability (>4000 cycles). Moreover, the finger motions and wrist pulse can be monitored in real time. These results demonstrate the potential application value and broad developmental prospects of carbonized cotton/thermoplastic polyurethane composites in flexible wearable electronics.